
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

2

After Spark:

All Modern Data/ML Systems follow a similar architecture

Runtime

Manifest

Operators

Executable

A fixed set of operators

A trusted runtime with a small
set of pre-loaded

implementations

Executable

Compiler

Syntax

Programs

After Spark: Many new systems

Naiad

Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

2012 - Now

ML Era (roughly starts from 2008, even before Spark has

taken off)

• ML was still very diverse (a.k.a. in a mess) in 2012

XGBOOST Spark mllib

LDA Torch (lua) / Theano / distbelief

Diversity -> Good or Bad?

• ML is so diverse

• Cons:

• There is no unified model / computation

• Hard to build a programming model / interface that cover a

diverse range of applications

• Pros:

• A lot of opportunities: Gold mining era

ML Systems Plan in DSC 204A

• ML System history

• Parameter server for data parallelism

• Deep Learning (Autodiff) libraries: tensorflow, pytorch, etc.

• LLMs: Model Parallelism, training and inference

ML System history

• ML Systems evolve as more and more ML components

(models/optimization algorithms) are unified

Ad-hoc: diverse model family,
optimization algos, and data

Opt algo: iterative-convergent

Model family: neural nets

Model:
CNNs/transformers/GNNs

LLMs: transformer
decoders

More and more unified
yet scope becoming

narrower and narrower

The first Unified component: Iterative-convergence Algo

Gradient boosting tree Coordinate descent

EM Algorithm Gradient descent

10

Example: Gradient Descent

• The first unification:

• Most ML algorithms are iterative-convergent

• iterative-convergent is the master equation behind

dataobjective

Gradient / backward computation

Recall collective

communication

How to Distribute this Equation?

dataobjective

Gradient / backward computation

How to perform this sum?

Problems if expressing this in Spark

• ML is too diverse; hard to express their computation in coarse-

grained data transformations.

Problems if expressing this in Spark

• Very heavy communication per iteration

• Compute time : communication time = 1:10 in the era of 2012

Consistency

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()

15

BSP’s Weakness: Stragglers

Time

Device A

Device B

Device C

An interesting property of Gradient Descent (ascent)

Machine Learning is Error-tolerant (under certain

conditions)

18

Background: Strict Consistency

• Baseline: Bulk Synchronous Parallel (BSP)

• MapReduce, Spark, many DistML Systems

• Devices compute updates Δ𝐿() between

global barriers (iteration boundaries)

• Advantage: Execution is serializable

• Same guarantees as sequential algo!

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()

19

Background: Asynchronous Communication

(No Consistency)

• Asynchronous (Async): removes all communication barriers

1

1

1

1

Device 1

Device 2

Device 3

Device 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

20

Background: Bounded Consistency

Clock

Device A

Device B

Device C

1 2 3 4

Staleness s = 3

5 6

Delay = 3

Block

[Ho et al., 2013; Dai et al., 2015; Wei et al.,
2015]

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-barrier)

e.g. Stale Synchronous Parallel (SSP):Devices allowed to iterate at different speeds

• Fastest & slowest device must not drift > 𝑠 iterations apart (in this example, 𝑠 = 3)
• 𝑠 is the maximum staleness

21

SSP: “Lazy” Communication

Clock

Device A

Device B

Device C

1 2 3 4

Staleness = 3

5 6

Delay = 2Updates received by Device B

Not communicated, but still
satisfy SSP

SSP: devices avoid communicating unless necessary

• i.e. when staleness condition is about to be violated
• Favors throughput at the expense of statistical efficiency

22

Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay

Parameter Server Naturally emerges

Parameter Server Implementation

• Sharded parameter server: sharded KV stores

• Avoid communication bottleneck

• Redundancy across different PS shards

Summary: Parameter Server

• Why does it emerge?

• Unification of iterative-convergence optimization algorithm

• What problems does it address and how?

• Heavy communication, via flexible consistency

• Pros?

• Cope well with iterative-convergent algo

• Cons?

• Extension to GPUs?

• Strong assumption on communication bottleneck

The Second Unified Component: Neural Networks

Figure from AlexNet

[Krizhevskyet al., NeurIPS 2012], [Krizhevskyet al., preprint, 2014]

Deep learning Emerges

• Still iterative-convergent: because of using SGD

• GPU becomes a must

• Neural network architecture itself can be very diverse

• But less diverse than the whole spectrum of all ML models

• Still needs a sufficiently expressive lib to program various architectures

• Map-reduce, spark-defined data processing are too coarse grained

• It starts with a relatively small model

• Spark is too bulky

• Spark op lib does not align well with neural network ops

28

Deep Learning Libraries

• Deep Learning as Dataflow Graphs

• Auto-differentiable Libraries

Recall our Goal

• Goal: we want to express as many as deep neural networks as

possible using one set of programming interface by connecting

math primitives

• What constitutes a model from math primitives?

• Model and architecture: connecting math primitives

• Objective function

• Optimizer

• Data

Discussion: how we express computation in history

Applications <-> System Design

Application

Systems

Data management

(OLTP)

SQL

Query planner

Relational database

Storage

Big data processing

(OLAP)

Spark/mapreduce

Dataflow, lineage

Data warehousing

Column storage

High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of) different kinds of

hardware

High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of) different kinds of

hardware

Maybe?

• ML is mostly tensor operations and more diverse; hard to express

their computation in coarse-grained data transformations.

Operators

High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of) different kinds of

hardware

Computational Dataflow Graph

• Node: represents the computation (operator)

• Edge: represents the data dependency (data flowing direction)

• Node: also represents the output tensor of the operator

• Node: also represents an input constant tensor (if it is not a

compute operator)

x MSE

y

relu matmul

w2

matmul

w1

a x b + 3

Case Study: TensorFlow Program

• In the next few slides, we will do a case study of a deep learning

program using TensorFlow v1 style API (classic Flavor).

• Note that today most deep learning frameworks now use a

different style, but share the same mechanism under the hood

• Think about abstraction and implementation when going through

these examples

One linear NN: Logistic Regression

Whole Program

Loss Function

Auto-diff

SGD Update

Trigger the Execution

What happens behind the Scene

What happens behind the Scene (Cond.)

What happens behind the Scene (Cond.)

What happens behind the Scene (Cond.)

Discussion

• What are the benefits for computational graph abstraction?

• What are possible implementations and optimizations on this

graph?

• What are the cons for computational graph abstraction?

A different flavor: PyTorch

Topic: Symbolic vs. Imperative

• Symbolic vs. imperative programming

• Define-then-run vs. Define-and-run

ImperativeSymbolic

51

Discussion: Symbolic vs. Imperative

• Symbolic

• Good

• easy to optimize (e.g. distributed, batching, parallelization) for developers

• Much more efficient: can be 10x more efficient

• Bad

• The way of programming might be counter-intuitive

• Hard to debug for user programs

• Less flexible: you need to write symbols before actually doing anything

• Imperative:

• Good

• More flexible: write one line, evaluate one line (that’s why we all like Python)

• Easy to program and easy to debug

• Bad

• Less efficient

• More difficult to optimize

MCQ Time

• Which category, symbolic vs. imperative, is the following PL

belonging to?

• C++

• Python

• SQL

Something Interesting Here?

• Python is a define-and-run PL

• Tensorflow is define-then-run ML framework

• Tensorflow has Python as the primary interface language

• You are indeed using a DSL built on top of Python

• But PyTorch DSL is more pythonic than Tensorflow DSL.

54

Symbolic vs. Imperative (2016)

Imperative Symbolic

55

Symbolic vs. Imperative (2024)

Imperative Symbolic

Market size of frameworks

After-class Question

Why PyTorch wins the market even if it was a later framework?

58

Symbolic vs. Imperative (2024)

Imperative Symbolic

Just-in-time (JIT) Compilation

• Ideally, we want define-and-run during ______

• We want define-then-run during _____

• Q: how can combine the best of both worlds?

@torch.compile()

Devmode Deploymode:
Decorate torch.compile()

What happens behind the scene

@torch.compile()

What is the problem of JIT?

Requirements for static graphs

Q: What is the problem of JIT?

A: Requirements for static graphs

LSTM LSTM

LSTMLSTM

LSTMLSTM

LSTM

Static Models vs. Dynamic Models

62

conv2d pool conv2dx y
x
x

y
y

S

VP

VD N

NP

NP

D N

The girl picked

the coin

S

John

N VP

V NP

D N

hit the ball John hit the ball

LSTM

LSTM LSTM

LSTM

LSTM LSTM

LSTM

LSTM LSTM

The girl picked the coin

Dataflow graph

High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of) different kinds of

hardware

Next class

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives

Recap: how to take derivative?

Given 𝑓 𝜃 , what is
𝜕𝑓

𝜕𝜃
？

Problem:
slow: evaluate f twice to get
one gradient

Error: approximal and
floating point has errors

𝜕𝑓

𝜕𝜃
= lim

𝜖→0

𝑓 𝜃 + 𝜖 − 𝑓(𝜃)

𝜖

≈
𝑓 𝜃 + 𝜖 − 𝑓 𝜃 − 𝜖

2𝜖
+ 𝑜(𝜖2)

Instead, Symbolic Differentiation

Write down the formula, derive the gradient following PD rules

𝜕(𝑓 𝜃 +𝑔 𝜃)

𝜕𝜃
=
𝜕𝑓 𝜃

𝜕𝜃
+
𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓 𝜃 𝑔 𝜃)

𝜕𝜃
= 𝑔 𝜃

𝜕𝑓 𝜃

𝜕𝜃
+𝑓 𝜃

𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓(𝑔 𝜃)

𝜕𝜃
=
𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)

𝜕𝑔 𝜃

𝜕𝜃

Map autodiff rules to computational graph

• Q: Calculate the value of
𝜕𝑦

𝜕𝑥1

• A: use PD and chain rules

• There are two ways of applying chain

rules

• Forward: from left (inside) to right

(outside)

• Backward: from right (outside) to left

(inside)

• Which one fits with deep learning?

Forward Mode AD

• Define ሶ𝑣𝑖 =
𝜕v𝑖

𝜕𝑥1

• We then compute each ሶ𝑣𝑖 following

the forward order of the graph

• Finally:
𝜕𝑦

𝜕𝑥1
= ሶ𝑣7 = 5.5

Summary: Forward Mode Autodiff

• Start from the input nodes

• Derive gradient all the way to the output nodes

• Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑛 forward passes to get the grad w.r.t.

each input

• However, in ML: 𝑘 = 1 mostly, and 𝑛 is very large

Reverse Mode AD

• Define adjoint ഥ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖

• We then compute each ҧ𝑣𝑖 in the

reverse topological order of the graph

• Finally:
𝜕𝑦

𝜕𝑥1
= ҧ𝑣1 = 5.5

Case Study

How to derive the gradient of 𝑣1

For a 𝑣𝑖 used by multiple consumers:

, where

Summary: Backward Mode Autodiff

• Start from the output nodes

• Derive gradient all the way back to the input nodes

• Discussion: Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑘 backward passes to get the grad

w.r.t. each input

• in ML: 𝑘 = 1 and 𝑛 is very large

• How about other areas?

Back to Our Question

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives

Back to our question: Construct the Backward Graph

• How can we construct a computational graph that calculates the adjoint value?

f: (exp 𝑣1 +1)exp(𝑣1)

How to implement reverse Autodiff (aka. BP)

Record all partial adjoints of a
node

Sum up all partial adjoints to
get the gradient

Compute and propagates
partial adjoints to its inputs.

Start from 𝑣4 i = 4: 𝑣4 = 𝑠𝑢𝑚 1 = 1

𝑣4: Inspect (𝑣2, 𝑣4) and (𝑣3, 𝑣4)

i=4: ഥ𝑣4 = 𝑠𝑢𝑚 1 = 1

k=2: 𝑣2→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣2
= ഥ𝑣4𝑣3

k=3: 𝑣3→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣3
= ഥ𝑣4𝑣2, 𝑣3→4 = ഥ𝑣3

Inspect 𝑣3

i=3: ഥ𝑣3 done!

k=2: 𝑣2→3 = ഥ𝑣3
𝜕𝑣3

𝜕𝑣2
= ഥ𝑣3

Inspect 𝑣2

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4

Inspect (𝑣1, 𝑣2)

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4

k=1: 𝑣1→2 = ഥ𝑣2
𝜕𝑣2

𝜕𝑣1
= ഥ𝑣2exp(v1),

ഥ𝑣1 = 𝑣1→2

Summary: Backward AD

• Construct backward graph in a symbolic way (instead of concrete

values)

• This graph can be reused by different input values

• Used by TensorFlow, PyTorch

Backpropagation vs. Reverse-mode AD

• Run backward through the forward graph

• Caffe/cuda-convnet

• Construct backward graph

• Used by TensorFlow, PyTorch

VS.

Incomplete yet?

• What is the missing from the following graph for ML training?

84

Forward Backward Weight update

Recall Our Master Equation

85

Put in Practice

Operator / its output tensor Data flowing direction

Forward

x MSE

y

relu matmul

w2

matmul

w1

+Backward

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

+Weight update

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

Homework: How to derive gradients for

• Softmax cross entropy:

𝐿 = −∑𝑡𝑖 log 𝑦𝑖 , 𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 =
𝑒𝑥𝑖

∑𝑒𝑥𝑑

Today

• Autodiff

• Architecture Overview

88

MLSys’ Grand problem

• Our system goals:

• Fast

• Scale

• Memory-efficient

• Run on diverse hardware

• Energy-efficient

• Easy to program/debug/deploy

ML System Overview

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Goal:

• Rewrite the original Graph G to G’

• G’ runs faster than G

Motivating Example: Attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Why merged QKV is faster?

Arithmetic Intensity

AI = #ops / #bytes

How to perform graph optimization?

• Writing rules / template

• Auto discovery

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Parallelization

• Goal: parallelize the graph compute over multiple devices

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

node node

node node

Fast connections

Slow connections

How to partition the computational graph
on the device cluster?

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’

Parallelization Problems

• How to partition

• How to communicate

• How to schedule

• Consistency

• How to auto-parallelize?

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Runtime and Scheduling

• Goal: schedule the compute/communication/memory in a way

that

• As fast as possible

• Overlap communication with compute

• Subject to memory constraints

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Operator Implementation

• Goal: get the fastest possible implementation of

• Matmul

• Conv2d?

• For different hardware: V100, A100, H100, phone, TPU

• For different precision: fp32, fp16, fp8, fp4

• For different shape: conv2d_3x3, conv2d_5x5, matmul2D, 3D,

attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of) different kinds of

hardware

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: After Spark: All Modern Data/ML Systems follow a similar architecture
	Slide 3: After Spark: Many new systems
	Slide 4: Where We Are
	Slide 5: ML Era (roughly starts from 2008, even before Spark has taken off)
	Slide 6: Diversity -> Good or Bad?
	Slide 7: ML Systems Plan in DSC 204A
	Slide 8: ML System history
	Slide 9: The first Unified component: Iterative-convergence Algo
	Slide 10: Example: Gradient Descent
	Slide 11: How to Distribute this Equation?
	Slide 12: Problems if expressing this in Spark
	Slide 13: Problems if expressing this in Spark
	Slide 14: Consistency
	Slide 15: BSP’s Weakness: Stragglers
	Slide 16: An interesting property of Gradient Descent (ascent)
	Slide 17: Machine Learning is Error-tolerant (under certain conditions)
	Slide 18: Background: Strict Consistency
	Slide 19: Background: Asynchronous Communication (No Consistency)
	Slide 20: Background: Bounded Consistency
	Slide 21: SSP: “Lazy” Communication
	Slide 22: Impacts of Consistency/Staleness: Unbounded Staleness
	Slide 23: Parameter Server Naturally emerges
	Slide 24: Parameter Server Implementation
	Slide 25: Summary: Parameter Server
	Slide 26: The Second Unified Component: Neural Networks
	Slide 27: Deep learning Emerges
	Slide 28: Deep Learning Libraries
	Slide 29: Recall our Goal
	Slide 30: Discussion: how we express computation in history Applications <-> System Design
	Slide 31: High-level Picture
	Slide 32: High-level Picture
	Slide 33: Maybe?
	Slide 34: Operators
	Slide 35: High-level Picture
	Slide 36: Computational Dataflow Graph
	Slide 37: Case Study: TensorFlow Program
	Slide 38: One linear NN: Logistic Regression
	Slide 39: Whole Program
	Slide 40: Loss Function
	Slide 41: Auto-diff
	Slide 42: SGD Update
	Slide 43: Trigger the Execution
	Slide 44: What happens behind the Scene
	Slide 45: What happens behind the Scene (Cond.)
	Slide 46: What happens behind the Scene (Cond.)
	Slide 47: What happens behind the Scene (Cond.)
	Slide 48: Discussion
	Slide 49: A different flavor: PyTorch
	Slide 50: Topic: Symbolic vs. Imperative
	Slide 51: Discussion: Symbolic vs. Imperative
	Slide 52: MCQ Time
	Slide 53: Something Interesting Here?
	Slide 54: Symbolic vs. Imperative (2016)
	Slide 55: Symbolic vs. Imperative (2024)
	Slide 56: Market size of frameworks
	Slide 57: After-class Question
	Slide 58: Symbolic vs. Imperative (2024)
	Slide 59: Just-in-time (JIT) Compilation
	Slide 60: What happens behind the scene
	Slide 61
	Slide 62: Static Models vs. Dynamic Models
	Slide 63: High-level Picture
	Slide 64: Next class
	Slide 65: Recap: how to take derivative?
	Slide 66: Instead, Symbolic Differentiation
	Slide 67: Map autodiff rules to computational graph
	Slide 68: Forward Mode AD
	Slide 69: Summary: Forward Mode Autodiff
	Slide 70: Reverse Mode AD
	Slide 71: Case Study
	Slide 72: Summary: Backward Mode Autodiff
	Slide 73: Back to Our Question
	Slide 74: Back to our question: Construct the Backward Graph
	Slide 75: How to implement reverse Autodiff (aka. BP)
	Slide 76: Start from v sub 4
	Slide 77: v sub 4: Inspect (v sub 2,, v sub 4) and (v sub 3,, v sub 4)
	Slide 78: Inspect v sub 3
	Slide 79: Inspect v sub 2
	Slide 80: Inspect (v sub 1,, v sub 2)
	Slide 81: Summary: Backward AD
	Slide 82: Backpropagation vs. Reverse-mode AD
	Slide 83: Incomplete yet?
	Slide 84: Recall Our Master Equation
	Slide 85: Put in Practice
	Slide 86: Homework: How to derive gradients for
	Slide 87: Today
	Slide 88: MLSys’ Grand problem
	Slide 89: ML System Overview
	Slide 90: Graph Optimization
	Slide 91: Motivating Example: Attention
	Slide 92: Arithmetic Intensity
	Slide 93: How to perform graph optimization?
	Slide 94: Parallelization
	Slide 95: Parallelization Problems
	Slide 96: Runtime and Scheduling
	Slide 97: Operator Implementation
	Slide 98: High-level Picture

