https://hao-ai-1lab.github.1o/dsc204a-125/

DSC 204A: Scalable Data Systems
Fall 2025

Staift
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

¢ @haozhangml) @haoailab
haozhang@ucsd. edu

https://twitter.com/haozhangml

After Spark:
All Modern Data/ML Systems follow a similar architecture

Programs Manifest

Syntax Operators A fixed set of operators

A frusted runtime with a small
set of pre-loaded

Runtime . .
implementations

Compiler

——
——
——
cecue

Executable Executable

After Spark: Many new systems

sk

Graphlab

Naiad 1F TensorFlow

Where We Are

Machine Learning Systems 2012 - Now

Big Data

Cloud

Foundations of Data Systems

ML Era (roughly starts from 2008, even betore Spark has
faken off)

* ML was still very diverse (a.k.a. in a mess) in 2012

Random Forest Simplified

Random For __,./"’"'{ e
= ’ R

4*"""'—/' = x
q/ O< Q)Q R\ Q/KX Cfb\}} .
> d
T 1
Class-A Class-B Class-B

‘ |
I Majority-Voting |

Final-Class

XGBOOST

Torch (lua) / Theano / d|s’rbel|ef

Diversity -> Good or Bade

®* ML Is so diverse
®* Cons:
®* There I1s no unifled model / computation
* Hard to builld a programming model / interface that cover o
diverse range of applications
® Pros:

* A lotf of opportunities: Gold mining era

ML Systems Plan in DSC 204A

* ML System history
* Parameter server for data parallelism
* Deep Learning (Autodiff) libraries: tensortlow, pytorch, etc.

* [LMs: Model Parallelism, training and inference

ML System history

* ML Systems evolve as more and more ML components

(models/optimization algorithms) are unified

Ad-hoc: diverse model family,

optimization algos, and data

Opft algo: iterative-convergent ‘
More and more unified

yet scope becoming
narrower and narower

Model family: neural nefts

Model;

CNNs/transformers/GNNSs

LLMs: transformer
decoders

The first Unified component: Iterative-convergence Algo

Random Forest Simplified

Instanf'e
Random Forest
m”m fﬁ» AN
cll s-B Class-B
| Majority-Voting | I
'Final-Class
Gradient boosting free

EM Algorithm Grod|en’r desc:en’r

10

Example: Gradient Descent

Gradient / backward computation

Recall collective
communication _
o) — glt—1) 4

|

eV, (0D D)

®* The first unification:

* Most ML algorithms are

* iterative-convergent is the master equation behind

] !

objective data

iterative-convergent

How to Distribute this Equation®e

Gradient / backward computation

|

") =9~V 4e.V, ("D D)
] !

objective data

P
ot — glt) L ¢ Z Vﬁ(O(’),Dg))

pzl\

How to perform this sume

Problems It expressing this in Spark

* ML Is too diverse; hard to express their computation in coarse-

grained data transformations.

map(f:T=1U) : RDD[T]= RDD[U]

filter(f : T = Bool) : RDD[T]= RDD[T]

flatMap(f : T = Seq[U]) : RDDI[T]=-RDDI[U]
sample(fraction : Float) : RDD[T] = RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] = RDDI[(K, Seq[V])]
reduceByKey(f : (V,V)=V) : RDDI[(K, V)] = RDD[(K, V)]
union() : (RDDI[T],RDD[T])=- RDDI[T]
join() : (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W1))]
crossProduct() : (RDD[T],RDD[U]) = RDDI[(T, U)]
mapValues(f : V= W) : RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDDI[(K, V)] = RDD|[(K, V)]
partitionBy(p : Partitioner[K]) : RDDI[(K, V)] = RDD|[(K, V)]

C

Problems It expressing this in Spark

P
0+ =90 1 e Y v,(60, DY)
p=1

* Very heavy communication per iteration

* Compute tfime : communication time = 1:10 in the era of 2012

Consistency

P
0+ =90 1 e Y v,(60, DY)
p=1

Global Syndhronization Barrier

Device A
fa) ‘ AL O ALQ
kDeviceB)
f¢ 1| A0 A0
Y 20 § &0
| 2 . 3

BSP's Weakness: Stfragglers

Device A

(")

>

\. J

Device B

Time

An interesting property of Gradient Descent (ascent)

Machine Learning is Error-tolerant (under certain
conditions)

Background: Strict Consistency

®* Baseline: Bulk Synchronous Parallel (BSP)

* MapReduce, Spark, many DistML Systems . Global Synchronization Barrier
Device A 5
¢ ‘ AL O A O
®* Devices compute updates A, () between .)
. . . . Device B
global barriers (iteration boundaries) .
5.0 K 4.0
* Advantage: Execution is serializable A0
A A
® Same guarantees as sequential algo! ‘ 0 -
1 2 3 4

19

Background: Asynchronous Communication
(No Consistency)

®* Asynchronous (Async): removes all communication barriers

Device | I
Device 2 -»“-»““-g»
Device 3 “@@“““

Device 4 '}“‘»E’““»

Bridging/Consistency Model

Background: Bounded Consistency

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-toamier)

e.g. Stale Synchronous Parallel (SSP): Devices alowed to iterate at different speeds

» Fastest & slowest device must not dnft > s iterations apart (in this example, s = 3)
e 5Isthe maximum staleness

Delay - 3 | | Stalenesss =3

Device A

y Block

Device B

J

20 [Hoetdl., 2013; Dc;ioe]’r5 ?I., 2015; Wei et dl,] . 3 4 5 A Clock

21

SSP: “Lazy” Communication

SSP: devices avoid communicating unless necessary
* |.e.when staleness condition is abbout 1o e violated
» Favors throughput atf the expense of statistical efficiency

Updates received by Device B | De_lcy =2

Staleness = 3

4) I

Device B

e

th communiéated, but still
q/ \/ satisfy SSP
1 2 3 4 5 6 Clock

22

Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay

SSP s=0
|— SSP s=2
— SSP s=3
—SSP s=5

- - ESSP s=0

——SSP s=10 |

--ESSP s=10¢

Parameter Server Naturally emerges

Parameter Server Implementation

* Sharded parameter server: sharded KV stores

* Avoid communication bottleneck

® Redundancy across different PS shards
Parameter Servers

Summary: Parameter Server

* Why does it emergee
* Unification of iterative-convergence optimization algorithm
* What problems does it address and howe
* Heavy communication, via flexible consistency
® Prose
* Cope well with iterative-convergent algo
® Conse
* Extension fo GPUse

® Strong assumption on communication bottleneck

The Second Unifled Component: Neural Networks

3
5 - 3| -
\ RN 3. . » >
5 _,-""' H- -~ - - === = -.
i' B 3 ““:x"\ p Jr’xf.l d
48 | Ai} 192 192 128 2048 2048 ense
27 128 . ’jz:"'qjhﬁi:‘,::_:t\h
) j\ Lt =____11‘:\\“ \ B
2\ L \ JE \ N
5 | 3 R 3| |
1 [\ 13~ IRWE dense| |dense| [)
27 EN 3| 3~ denss
< 1000
192 192 128 Max
- 2048
Max 128 Max nooling 5048
pooling oooling

48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input 1s 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096—4096-1000.

Figure from AlexNet
[Knizhevsky et al., NeurlPS 2012], [Krizhevsky et al., prepnnt, 2014]

Deep learning Emerges

* Still iIferative-convergent: because of using SGD
* GPU becomes a must
* Neural network architecture itselt can be very diverse
®* Buft less diverse than the whole spectrum of all ML models
* Still needs a sufficiently expressive lib to program various architectures
* Map-reduce, spark-defined data processing are too coarse grained
* |t starts with a relatfively small model
* Spark is foo bulky

* Spark op lib does not align well with heural network ops

28

Deep Learning Libraries

* Deep Learning as Dataflow Graphs

* Auto-differentiable Libraries

Recall our Godl

* Goal: we want 1o express as many as deep neural networks as
possible using one set of programming inferface by connecting
math primitives

* What constitutes a model from math primitives?

* Model and architecture: connecting math primitives
* Objective function
* Optimizer

* Data

Discussion: how we express computation in history
Applications <-> System Design

Application Data management Big data processing
(OLTP) (OLAP)

Systems SQL Spark /mapreduce

Query planner Dataflow, lineage

Relational database Data warehousing

Storage Column storage

High-level Picture

Data Model Compute

Math primiti
? = PHITITVES ?Make them run on (clusters

?{xi}” i—1 (mostly matmul of) different kinds of
hardware

?A repr that expresses the
computation using primitives

High-level Picture

Data Model Compute

Math primiti
? = PHITITVES ?Make them run on (clusters

L =1 (mostly matmul of) different kinds of
hardware

?A repr that expresses the
computation using primitives

Maybee

map(f:T=1U) : RDD|[T]=-RDD[U]
filter(f : T= Bool) : RDD[T]=-RDDI[T]
flatMap(f : T = Seq[U]) : RDD|[T] = RDD|[U]
sample(fraction : Float) : RDD[T]= RDD[T] (Deterministic sampling)
groupByKey() : RDD[(K, V)] = RDD[(K, Seq[V])]
reduceByKey(f : (V,V)=YV) : RDD[(K, V)] = RDDI[(K, V)]
union() : (RDD[T],RDD[T]) = RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)],RDD[(K, W)]) = RDDI[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U]) = RDDI(T, U)]
mapValues(f: V=W) : RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDDI[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]

C

* ML Is mostly tensor operations and more diverse; hard to express

thelr computation In coarse-grained data tfransformations.

Operators

API

Name inference rule

Tensor.

abs() , torch.abs()

Tensor

.abs_()

Tensor.

acos() , torch.acos()

Tensor.

acos ()

Tensor.

add() , torch.add()

Tensor.

add_()

Tensor

.addmm() , torch.addmm()

Tensor.

addmm ()

Tensor.

addmv() , torch.addmv()

Tensor.

addmv_()

Tensor.

align_as()

Tensor.

align_to()

Tensor

.all() , torch.all()

Tensor.

any() , torch.any()

Tensor.

asin() , torch.asin()

Tensor.

asin ()

Tensor.

atan() , torch.atan()

Keeps input names

Keeps input names

Keeps input names

Keeps input names

Unifies names from inputs

Unifies names from inputs

Contracts away dims

Contracts away dims

Contracts away dims

Contracts away dims

See documentation
See documentation
None
None

Keeps input names

Keeps input names

Keeps input names

Total: 2,188

Corvolution: 67

Pocling: 42 B
BalchNorm: 15«

Privale: 233

Base: 1215

Inplace: 183

-mnl
Weird St 40 0

Out: 308

Tonsorn 94

Overloacs: 583 Scalar: 89 ||

grad_input: 52 1
Tonsor_out: 24

dmname: 21
Scalar_out:- 20 =

A long tad: 377

Abas: 42
Compesite Reduction: 76 ||
Composito Pointwiso: 87]
. Primitive Pointwise: 50 1
Composite Malmut: 13 =
ViewReshapo: 70

< Factory: 39
Misc: 56
Named: 5
‘Complex: 8
Linalg: 31
Sparse: 13 -
FFT. 20 »
RNN: 12
Quantizabon: 11
Scaltee/Gathee. 15 =
FBgemm:7 ~

High-level Picture

Data Model Compute

Math primitives
?Make them run on (clusters

{xi}ni=1 (mostly matmul) of) different kinds of
hardware

?A repr that expresses the
computation using primitives

Computational Datatlow Graph

* Node: represents the computation (operafor)

®* Edge: represents the data dependency (data flowing direction)
®* Node: also represents the oufput fensor of the operator
®* Node: also represents an input constant tensor (if it Is not @

compute operator)

N
mul }/[add—const] [wl J [w2 1 @
3

mat"mulH relu]—{ mat‘mul]—>@éE
axb+3 L = MSE(’LUQ ' ReLU(wl.:c), y)

Case Study: TensorFlow Program

* In the next few slides, we will do a case study of a deep learning
program using TensorFlow v1 style API (classic Flavor).

®* Nofe that today most deep learning frameworks now use a
different style, but share the same mechanism under the hood

®* Think about abstraction and implementation when going through

these examples

1ON

Logistic Regress

One linear NN

Softmax

One Linear Layer

Input

VWTABS VP =™
NN NN A/ & T
A9 M — CCNORV)N
N HJI 9 W) b 0 o N
BAOS TOYHL O
NI Ty \N© g
g~ T 0 0N D N
NNO Mg —o NS
>NV AN
mlsdNNNT-YM —

Whole Program

import tinyflow as tf

from tinyflow.datasets import get mnist

,ﬁ_ﬂcea_tﬁ_the_mgde]. _________________________ Forward CompUtat|0n
x = tf.placeholder(tf.float32, [None, 784]) } DEC|arati0n

= tf.Variable(tf.zeros([784, 10]))
= tf.nn.softmax(tf.matmul(x, W)) !

. S g BN e g g RS R G R N S AR S SN R R G B Em Ee am e

——

\
b

W
y
3
y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))

Update rule
learning rate = 0.5
W grad = tf.gradients(cross _entropy, [W])[9]
train step = tf.assign(W, W - learning rate * W grad)
Tralnlng Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for 1 in range(1000):
batch xs, batch ys = mnist.train.next batch(160)
sess.run(train step, feed dict={x: batch xs, y :batch ys})

Loss Function

import tinyflow as tf
from tinyflow.datasets import get mnist

Create the model

#

x = tf.placeholder(tf.float32, [None, 784])
W = tf.vVariable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

e R e e R e

f# Define loss and optimizer \‘/ LOSS funCtion DECIBration

|
y = tf.placeholder(tf.float32, [None, 10]) :

|
cross_entropy = tf.reduce mean(-tf.reduce sum(y_ * tf.log(y), reduction indices=[1])) ,
I

B J P(label — k) — Y

learning rate = 0.5
10

o —— —

W grad = tf.gradients(cross _entropy, [W])[©]

train step = tf.assign(W, W - learning rate * W grad) L(y) — Z I(label — k) 10(%(3/2)
Tralning Loop

sess = tf.Session() k}——l

sess.run(tf.initialize all variables())

mnist = get mnist(flatten=True, onehot=True)

for 1 in range(1000):
batch xs, batch ys = mnist.train.next batch(100)
sess.run(train step, feed dict={x: batch xs, y :batch ys})

Auto-diff

import tinyflow as tf

from tinyflow.datasets import get mnist

Create the model

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))
7
y_

Define loss and optimizer

= tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
Update rule

learning rate = 0.5

Automatic Differentiation:
| W_grad - tf.gradients(cross_entropy, [W)[0]] Next incomin g topic

T o e E e e e e mm e e e e e E e e mme e e e e e Em e mmm mm e e e e e e mmm e e mme e e e e G Emm e e e e e e e e

train step = tf.assign(W, W - learning rate * W grad)

Training Loop

sess = tf.Session()

sess.run(tf.initialize all variables())

mnist = get mnist(flatten=True, onehot=True)

for 1 in range(1000):
batch Xxs, batch ys = mnist.train.next batch(1690)
sess.run(train step, feed dict={x: batch xs, y :batch ys})

SGD Update

import tinyflow as tf

from tinyflow.datasets import get mnist

Create the model

x = tf.placeholder(tf.float32, [None, 784])
W = tf.variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

Define loss and optimizer

y = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
Update rule

learning rate = 0.5

' grad = tf.gradients(cross _entropy, [W])[©]
_Wgrad - tf.gradients(cross_en tropy, MDIO) . SGD update rule

train step = tf.assign(W, W - learning rate * W grad)

-———

-~ ¥ Traihming~Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for 1 in range(1000):
batch xs, batch ys = mnist.train.next batch(160)
sess.run(train_step, feed dict={x: batch xs, y :batch ys})

Trigger the Execution

import tinyflow as tf

from tinyflow.datasets import get mnist

Create the model

X = tf.placeholder(tf.float32, [None, 784])
W = tf.variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))
b
y_

Define loss and optimizer

= tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
Update rule
learning rate = 0.5
W grad = tf.gradients(cross _entropy, [W])[9]
train step = tf.assign(W, W - learning rate * W grad)
Tralning Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)

for 1 in range(1000): Real EXECUtIOH happenS

batch xs, batch ys = mnist.train.next batch(160) r]GEI,EEI

o e

What happens behind the Scene

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
tf.nn.softmax(tf.matmul(x, W))

<
|

What happens behind the Scene (Cond.)

y = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce mean(-tf.reduce sum(y_ * tf.log(y), reduction indices=[1]))

— o e e e e e e e e e e e e e e e M e e S e e e M e e e e M e e e e e

What happens behind the Scene (Cond.)

W grad = tf.gradients(cross _entropy, [W])[9]

Automatic Differentiation, more details in
follow up lectures

matmult softmax

cross_entropy
log }———+[mul jk—ﬂ{ mean]————*

__

W grad:(matmult- | ‘ |
“ EL_ transpose softmax-grad]+4: log-grad mul 1 / batch size

--

What happens behind the Scene (Cond.)

sess.run(train_step, feed dict={x: batch _xs, y :batch ys})

y cross_entropy
matmult softmax log }———+[mul }——{j mean]————*
e

i W_grad matmult- l
i [mul]1 { transpose softmax-grad]+4: log-grad F———{ mul }*——- 1 / batch size

e o e o oo o o e o o o o e]

Discussion

* What are the benetfits for computational graph abstractione
* What are possible implementations and opfimizations on this
graphe

* What are the cons for computational graph abstractione

[assign]*

cross_entropy
T matmult softmax log }———+[mul }——+[mean ;}———+
sub T
| [y—l

|_grad matmult-
[mlT.ll]7 transpose softmax-grad H log-grad]4—[mul }——— 1 / batch size

learning rate

A different flavor: PyTorch

A graph is created on the fly n ﬂ “ .

H_h = torch.randn (20, 20, requires_grad=TruE}
W x = torch.randn (20, 10, requires grad=True)
¥ = torch.randn(l, 10)

prev h = torch.randn(l, 20)

Topic: Symbolic vs. Imperative

* Symbolic vs. imperative programming

* Define-then-run vs. Define-and-run

X = torch.Tensor([3

y = torch.Tensor([2]

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W)) loss = square(z)

Z =X - Y

| loss.backward()
y = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) print(x'grad)

Symbolic Imperative

ol

Discussion: Symbolic vs. Imperative

* Symbolic
* Good
® eqsy fo optimize (e.g. distributed, batching, parallelization) for developers
* Much more efficient: can be 10x more efficient
* Bad
* The way of programming might be counter-intuitive
* Hard to debug for user programs
* Less flexible: you need to write symbols before actually doing anything
* |mperative:
* Good
* More flexible: write one line, evaluate one line (that's why we all like Python)
® FEasy to program and easy to debug
* Bad
®* |Less efficient
* More difficult to optimize

MCQ Time

* Which category, symbolic vs. imperative, is the following PL
belonging to<¢
® C++
®* Python
* SQL

Something Interesting Heree

* Python Is a define-and-run PL
* Tensorflow Is define-then-run ML fraomework

®* Tensortflow has Python as the primary interface language

®* You are indeed using a DSL built on top of Python

® But PyTorch DSL is more pyfhonic than Tensortlow DSL.

54

Symbolic vs. Imperative (2016)

DyNet

2>
‘r'torch Chainer

‘ dmlc
PYTORCH mxnet

Tensor

+Q+’ Caffe2

theano

Caffe

Imperative

Symbolic

99

Symbolic vs. Imperative (2024)

PYTORCH

—

Imperative Symbolic

Market size of frameworks

ArXiv Articles .
Percentage of Repositories by Framework ® Other W PyTorch [l TensorFlow Number of Models on HuggingFace
100% s0000
T5%
3000 s0000
S &
" +£ 50% 3
i) o =
L o = 40000
fak) o
: ; :
25% E
=
20000
0%
Jan 2018 Jan 2019 Jan 2020 Jan 2021 Jan 2022 -
e Eee———]
& Repository creation date PyTorch Cnly TensorFlow Only PyTorch and TensorFlow

G G
?‘:5&.5, o "'r-hyé} Ve ﬂeﬁ‘h{e& :?,-5%3 Qﬁa@?& 9514!

Framework j}?.ﬂfq 7

Atfter-class Question

Why PyTorch wins the market even if it was a later framework®e

53

Symbolic vs. Imperative (2024)

PYTORCH

—

Imperative Symbolic

Just-in-time (JIT) Compilation

* |deally, we want define-and-run during

* We want define-then-run during

* QQ: how can combine the best of both worlds?

@torch.compile()

X = torch.Tensor([3]) X = torch.Tensor([3])
y = torch.Tensor([2]) y = torch.Tensor([2])
Z =X - Y Z =X - Y
loss = square(z) loss = square(z)
loss.backward() loss.backward()
print(x.grad) print(x.grad)

Dev mode Deploy mode:

Decorate torch.compile()

What happens behind the scene

Graph Graph Graph
Acquisition Lowering Compilation
Izlg'tl"ADz:‘oagT:d ATen/Prim IR It::’utiglnductor (default) powered by Triton
' . : Your Own Backend
\ nvFuser
FTVM
- XLA
, AlTemplate
 TensorRT
: ; = m M| oMo m oo
@torch.compile() . . - La T T
| v : EEm L Umm
def fOO(X): . | Comzd | Conv RNl bias |
y = F.conv2d(x, ...) v v | s eeBl [EEE
APl — ENNE 2 — x| - — "1 1. ‘B 1. "3 1
return F.relu(z) v | o i b
. [
/) | mo RN om
[YI max(x%,0) | EEN EEN EEN
v 7 EEN EE EEN

What is the problem of JIT?
Requirements for static graphs

Q: What is the problem of JIT¢

A: Requirements for stafic graphs

Static Models vs. Dynamic Models

Dataflow graph
- N - N
e N e N
s — [convad H pool H conv2d } v D
\\ X K\ y
N S N Y
e [LSTM } S [LSTM }
[LS } [LSTH } NP VP [LSTM } LSTM
[LSTH } LSTH } v NP [LSTM [LSTM } [LSTM } [LSTM }
[LSTH } [LSTH } [LSTM }[LSTM }
T ------------------------- } --------------- The gl picked | | e
John hit the ball the con The gir picked the coin

High-level Picture

Data Model Compute

(tl tmul) ?Mdke them run on (clusters
{xi}ni=1 HastieAiasin of) different kinds of
hardware

Math primitives

?A repr that expresses the
computation using primitives

Next class

A repr that expresses the
computation using
primitives

A repr that expresses the
computation using primitives

? A repr that expresses the
backward computation using
primitives

Recap: how to take derivativee

Given f(6), whati S~ af ?

Problem:
0 0+e)—f(6 '
% = lim M slow: evaluate f twice to gef
€ — ’
F0+e) - f(H) : one gradient
~ ——————+ 0(e%) Error: approximal and

floating point has errors

INnstead, Symbolic Differentiation

Write down the formula, derive the gradient following PD rules

a(f(8) +g(8)) af(6) 59(9)

o]y, o]y, o]y,

d(f(0)q(0 df (6 0g(@
(f(a)ég())_9(9) f() 1 F(O) g()

0(f(g(6)) 0f(g(6))ag(6)

00 0g(0) 90

Map autodiif rules to computational graph

y = f(x{,x,) = In(x;) + x;x, — sinx,

" e Q: Calculate the value of :—;

’ * A:use PD and chainrules
X2 * There are two ways of applying chain
Forward evaluation trace rules

v1=X1=2
U2=x2=5

* Forward: from left (inside) to right

v3 =Inv; =In2 = 0.693 (Qu’[gide)

vy = v XV, =10 : :

Vg = Sin v, = sin5 = —0.959 ® BOCKWOI’d frOm I’IghT (OUTSlde) TO |efT
U6 — 173 ~+ U,gl, = 10.693

v, = v, — ve = 10.693 + 0.959 = 11.652 (inside)

y =v; = 11.652 * Which one fits with deep learninge

Forward Mode AD

y = f(xq,x,) = In(xq) + x;x, — sinx,

: : ov;
®* Define v; = —
x1 ax:l_
y ® We then compute each v; following
X, the forward order of the graph
Forward evaluation trace v, =1
Vi =X = 7 sz =0
V, =X, =5 V3 = Vy/v; = 0.5
=lnv1 =In2 = 0.693 U4—U1U2+U2v1 = 1X54+0x2 =5
v, = VX v, = 10 Ve = U,c0SV, = 0Xcos5 =0
Ve = sinv, =sinb5 = —0.959 Ve =V3+1V, =05+5=55
Ve = V3 + v, = 10.693 Y, = Vs — Vs =55—0=5.5

Uy = Vg — Ve = 10.693 + 0.959 = 11.652
y = vy, = 11.652

* Finally: ;;’ =, =55
1

Summary: Forward Mode Autodiff

® Starf from the input hodes
®* Derive gradient all the way to the output hodes
®* Pros and Cons of FM Autodifte
* For f:R™ — R*, we need n forward passes to get the grad w.r.1.
each input

* However, In ML: k = 1 mostly, and n Is very large

Reverse Mode AD

]) (] L] — a
y = f(x1,%;) = In(x;) + x,x, — sinx, * Define adjoint 7; = >
i
X e
' * We then compute each v; in the
y :
reverse topological order of the graph
X5 __0y
¢ dv-
. __0v; __
Forward evaluation trace vﬁzv?gz"?’”:l
v, =2x; =2 —5=v—76—v:=v—7x(—1)=—1
172=x2=5 :::%:T@X1:1
v =lnv; =In2 = 0.693 I
v3—v6ﬁ—v6x1—1
174 — le vz — 10 . _avg _51;4 L L
175 — sin 172 — sin 5 — _0959 U5 :vsa—w+v4a—w=v5xcosv2+v4xv1 = —0.284+ 2 =1.716
Vg = V3 + 1, = 10.693 v—lzm%+v—3%=v—4xvz+ v—3v1:5+%:5.5

v, = v, — v = 10.693 + 0.959 = 11.652

= = 11.652 . 0 _
Y= * Finally: = =7, =55
axl

Case Study

OO0
©

How to derive the gradient of v,

v— —_ ay — af(v21v3) avz _I_ af(v21v3) av3
1 6121 01}2 61)1 6173 6v1

v, | — 0vs
=Ty —2 + Vg —>
dvy O vy

For a v; used by multiple consumers:

avj

’,71: — Z vi—>j Where ’Ul_}] — '17] %
l

JENnext(i)

Summary: Backward Mode Autodiff

® Starf from the output nodes
®* Derive gradient all the way back fo the input nodes
® Discussion: Pros and Cons of FM Autodiffe
* For f: R™ - R*, we need k backward passes to get the grad
w.r.t. each input
* InML: k=1 andnis very large

* How about other areqse

Back to Our Question

A repr that expresses the
computation using
primitives

A repr that expresses the
computation using primitives

? A repr that expresses the
backward computation using
primitives

Back to our question: Construct the Backward Graph

* How can we construct a computational graph that calculates the adjoint value®e

def gradient(out):
node to grad = {out: [1]}
for i in reverse topo order(out):
U; = XjVUis; = sum(node_to_grad[i])
for k € inputs(i):

compute vy_,; = V; Py
k

append 7,_,; to node_to_grad[k]
return adjoint of input U,y

f: (exp(v1) + Dexp(vy)

How to Implement reverse Autodift (aka. BP)

Record all partial adjoints of a

def gradient(out): /////,///”///d node

node to grad = {out: [1]}

for i in reverse_topo_order(out):
U; = LV, = sum(node_to_grad[i]) -
for k € inputs(i):

compute v,_,; = v; Py
k

- Sum up all partial adjoints to
get the gradient

. Compute and propagates
partial adjoints to its inputs.

append V,_; to node_to_grad[k]| -
return adjoint of input U,y

Start from v,

def gradient(out):
node_to grad = {out: [1]}

for i in reverse _topo order(out):
» v, = Zj U;; = sum(node_to_grad[i])
for k € inputs(i):
compute v,_,; = v;

6vi

oV

append v,_,; to node_to_grad[k]|
return adjoint of input V¢

(ZZT
node_to _grad: {

4: [v4]
}

—

exp

i = 4: v, = sum(|1])

id

i=4: v, = sum(|1]) =1

_ e 81)4 =
v,: Inspect (v,,v,) and (vs, v,) K=2:Vpoq = Vg = VsV
_ — 6174 _ _
k=3: U3_,4 = Vg5 = VsV, V354 = VU3
def gradient(out): V3
node_to grad = {out: [1]} @
for i in reverse_topo_order(out):
v; = Zj V;; = sum(node_to_grad[i]) @

for k € inputs(i):
o (2
compute vy _,; = v; oo +
- append 7v,_,; to node_to_grad[k] @ X @
return adjoint of input U,y X

i =4
node to grad: {
\ 2: [_v2—>4]

id

4: [v,]

—

INspect v,

def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo_order(out):
U; = 2jVis; = sum(node_to_grad[i])
for k € inputs(i):
compute v,_,; = v;

6vi

avk
- append v,_; to node_to_grad[k]
return adjoint of input Ui,y

i =3
node to grad: {
2: [V354, V53]
3: [73]
4: [v,]

}

—

i=3: U3 donel

_ 8173 _

k=2: VUyp_3 = Vg 6_172 = Vs

,-d
D

on (3
| e

(") 4

(=) 0™
X

id

Inspect v,

def gradient(out):
node_to _grad = {out: [1]}
for i in reverse_topo_order(out):

M) U, = X7, = sun(node_to_grad[i])

l

|

}

node_to_grad: {

for k € inputs(i):

— 6vi
compute Vy_,; = V;

avk

append V,_,; to node_to_grad[k]
return adjoint of input U ,y;

= 2

20 [V354,V253]

3: [v3]
4: [v,]

——

i=2: U = Vo3 T Vpy

exp

O @

I

V253

id

id

Inspect (vq, v,)

def gradient(out):
node_to grad = {out: [1]}
for i in reverse_topo _order(out):
U; = XjVis; = sum(node_to_grad[i])
for k € inputs(i):
compute Vy_; = V;

6v,;

avk
- append v,_,; to node_to_grad[k]
return adjoint of input Vi, ¢

[= 2

node_to_grad: {
1: [v4]

| 2: [Uz_)4,1)2_>3]
3: [v35]
4: [V,]

}

— i

T — ——

i=2: U = Vo3 T Vpy

_ — sz —
k=1: V15 = 1, ov;, v,exp(Vvy),

V1 = V12

Summary: Backward AD

® Construct backward graph in a symbolic way (instead of concrete
values)

®* This graph can be reused by ditferent input values

Backpropagation vs. Reverse-mode AD

® Run backward through the forward graph ® Construct backward graph

* Caffe/cuda-convnet * Used by TensorFlow, PyTorch

Incomplete yete

* What is the missing from the following graph for ML fraininge

e
I
(o=
X

Recall Our Master Equation
plt+1) — f(g(t)’ V: (9(?5)’ D(t)))
L = MSE(ws - ReLU(w1z), y) 6 = {wi,ws}, D = {(z,y)}
f(0,Vy) =60—-Vp

Forward

Put In Practice
p(t+1) — f(g(t)’ V: (9(?3)’ D(t)))
L = MSE(ws - ReLU(w1z), y) 6 = {w1, w2}, D = {(z,9)}
f(0,Vy) =60—-Vp

| Operator/ its output tensor —— Data flowing direction

Forward

[wl 1 [w2 } [SZ] [wl 1 w2 wl w2
mat"mul }—{ relu H mat'mul @ ma’émul H relu mat}nul matmul [relu mat"mul MéE
[relu’ }——[matmul Mé relu -{matmul MéE’ }*’

}%
mat"mul J ma’émul mat}nul J’/ mat"mul
! :
sub [sub

Homework: How to derive gradients for

® Softmax cross entropy:

Xi

L =-t;log(y;),y; = softmax(x); = Y e¥d

Today

* Autodiff

* Architecture Overview

MLSys’ Grand problem

* Our system goals:
e . et

@9 * Scale

| * Memory-efficient

* Run on diverse hardware

* Energy-efficient

Easy to program/debug/deploy

ML System Overview

-

SGD Trainer

N T

. :
Logit Layer =)
)

bl
-
— |
=1

Dataflow Graph

Autodiff

Dataflow Graph

Autodiff

Graph Optimization

* Goal:
®* Rewrite the original Graph G to G

® G’ runs faster than G

Dataflow Graph

Autodiff

Motivating Example: Attention

attention
head
X = "that" =
— © QN q = XQ .
> A — W et # Original
O weights Q = matmul(W_q, h)
*
X) B *) ? — K = matmul(W_k, h)
Ol K = XK . V = matmul(W_v, h)
girl > vl W > —_— &
run C.) —»
= Context = # Me FQEd OKV
T
X — q K v QKV = matmul(concat(W_qg, W_k, W_v), h)
va V = XV 2Q, * XK7T
Lo - > W softma:t:(_ - w)*XVw
- 100
©
| | |
300 wide 100 wide

* Why merged QKV is faster?

Arithmetic Intensity

Al = Hops / #bytes

Dataflow Graph

Autodiff

How to perform graph optimizatione

* Writing rules / tfemplate

* Auto discovery

Dataflow Graph

Autodiff

Parallelization

* Goal: parallelize the graph compute over mulfiple devices

How fo partition the computational graph
on the device clustere

Fast connections
[wl W2 - Slow connections
mat"mul relu matvmul MéE “ node node
: : Ter) Tor) o) Por)) opy) fone])
[relu matmul MSE }**
mafhul} mafhul}
node node
" e pEEE EE=EE

Dataflow Graph

Autodiff

Parallelization Problems

* How fo partition

* How to communicate
®* How fo schedule

® Consistency

* How to auto-parallelize¢

Runtime and Scheduling

* Goal: schedule the compute/communication/memory in a way
that
®* As fast as possible
* Overlap communication with compute

® Subject to memory constraints

Operator Implementation

* Goal: get the tastest possible implementation of
* Matmul
* Conv2de
* For different hardware: V100, A100, H100, phone, TPU
® For different precision: fp32, fp 16, P8, fp4
* For different shape: conv2d_3x3, conv2d_5&x5, matmul2D, 3D,

attention

High-level Picture

Data Model Compute

(tl tmul) ?Mc:ke them run on (clusters
{xi}ni=1 HastieAiasin of) different kinds of
hardware

Math primitives

A repr that expresses the
computation using primitives

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: After Spark: All Modern Data/ML Systems follow a similar architecture
	Slide 3: After Spark: Many new systems
	Slide 4: Where We Are
	Slide 5: ML Era (roughly starts from 2008, even before Spark has taken off)
	Slide 6: Diversity -> Good or Bad?
	Slide 7: ML Systems Plan in DSC 204A
	Slide 8: ML System history
	Slide 9: The first Unified component: Iterative-convergence Algo
	Slide 10: Example: Gradient Descent
	Slide 11: How to Distribute this Equation?
	Slide 12: Problems if expressing this in Spark
	Slide 13: Problems if expressing this in Spark
	Slide 14: Consistency
	Slide 15: BSP’s Weakness: Stragglers
	Slide 16: An interesting property of Gradient Descent (ascent)
	Slide 17: Machine Learning is Error-tolerant (under certain conditions)
	Slide 18: Background: Strict Consistency
	Slide 19: Background: Asynchronous Communication (No Consistency)
	Slide 20: Background: Bounded Consistency
	Slide 21: SSP: “Lazy” Communication
	Slide 22: Impacts of Consistency/Staleness: Unbounded Staleness
	Slide 23: Parameter Server Naturally emerges
	Slide 24: Parameter Server Implementation
	Slide 25: Summary: Parameter Server
	Slide 26: The Second Unified Component: Neural Networks
	Slide 27: Deep learning Emerges
	Slide 28: Deep Learning Libraries
	Slide 29: Recall our Goal
	Slide 30: Discussion: how we express computation in history Applications <-> System Design
	Slide 31: High-level Picture
	Slide 32: High-level Picture
	Slide 33: Maybe?
	Slide 34: Operators
	Slide 35: High-level Picture
	Slide 36: Computational Dataflow Graph
	Slide 37: Case Study: TensorFlow Program
	Slide 38: One linear NN: Logistic Regression
	Slide 39: Whole Program
	Slide 40: Loss Function
	Slide 41: Auto-diff
	Slide 42: SGD Update
	Slide 43: Trigger the Execution
	Slide 44: What happens behind the Scene
	Slide 45: What happens behind the Scene (Cond.)
	Slide 46: What happens behind the Scene (Cond.)
	Slide 47: What happens behind the Scene (Cond.)
	Slide 48: Discussion
	Slide 49: A different flavor: PyTorch
	Slide 50: Topic: Symbolic vs. Imperative
	Slide 51: Discussion: Symbolic vs. Imperative
	Slide 52: MCQ Time
	Slide 53: Something Interesting Here?
	Slide 54: Symbolic vs. Imperative (2016)
	Slide 55: Symbolic vs. Imperative (2024)
	Slide 56: Market size of frameworks
	Slide 57: After-class Question
	Slide 58: Symbolic vs. Imperative (2024)
	Slide 59: Just-in-time (JIT) Compilation
	Slide 60: What happens behind the scene
	Slide 61
	Slide 62: Static Models vs. Dynamic Models
	Slide 63: High-level Picture
	Slide 64: Next class
	Slide 65: Recap: how to take derivative?
	Slide 66: Instead, Symbolic Differentiation
	Slide 67: Map autodiff rules to computational graph
	Slide 68: Forward Mode AD
	Slide 69: Summary: Forward Mode Autodiff
	Slide 70: Reverse Mode AD
	Slide 71: Case Study
	Slide 72: Summary: Backward Mode Autodiff
	Slide 73: Back to Our Question
	Slide 74: Back to our question: Construct the Backward Graph
	Slide 75: How to implement reverse Autodiff (aka. BP)
	Slide 76: Start from v sub 4
	Slide 77: v sub 4: Inspect (v sub 2,, v sub 4) and (v sub 3,, v sub 4)
	Slide 78: Inspect v sub 3
	Slide 79: Inspect v sub 2
	Slide 80: Inspect (v sub 1,, v sub 2)
	Slide 81: Summary: Backward AD
	Slide 82: Backpropagation vs. Reverse-mode AD
	Slide 83: Incomplete yet?
	Slide 84: Recall Our Master Equation
	Slide 85: Put in Practice
	Slide 86: Homework: How to derive gradients for
	Slide 87: Today
	Slide 88: MLSys’ Grand problem
	Slide 89: ML System Overview
	Slide 90: Graph Optimization
	Slide 91: Motivating Example: Attention
	Slide 92: Arithmetic Intensity
	Slide 93: How to perform graph optimization?
	Slide 94: Parallelization
	Slide 95: Parallelization Problems
	Slide 96: Runtime and Scheduling
	Slide 97: Operator Implementation
	Slide 98: High-level Picture

