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After Spark:
All Modern Data/ML Systems follow a similar architecture
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After Spark: Many new systems

sk

Graphlab

Naiad 1F TensorFlow



Where We Are

Machine Learning Systems 2012 - Now

Big Data

Cloud

Foundations of Data Systems



ML Era (roughly starts from 2008, even betore Spark has
faken off)

* ML was still very diverse (a.k.a. in a mess) in 2012
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Diversity -> Good or Bade

®* ML Is so diverse
®* Cons:
®* There I1s no unifled model / computation
* Hard to builld a programming model / interface that cover o
diverse range of applications
® Pros:

* A lotf of opportunities: Gold mining era



ML Systems Plan in DSC 204A

* ML System history
* Parameter server for data parallelism
* Deep Learning (Autodiff) libraries: tensortlow, pytorch, etc.

* [LMs: Model Parallelism, training and inference



ML System history

* ML Systems evolve as more and more ML components

(models/optimization algorithms) are unified

Ad-hoc: diverse model family,

optimization algos, and data

Opft algo: iterative-convergent ‘
More and more unified

yet scope becoming
narrower and narower

Model family: neural nefts

Model;

CNNs/transformers/GNNSs

LLMs: transformer
decoders




The first Unified component: Iterative-convergence Algo

Random Forest Simplified

Instanf'e
Random Forest
m”m fﬁ» AN
cll s-B Class-B
| Majority-Voting | I
'Final-Class
Gradient boosting free

EM Algorithm Grod|en’r desc:en’r
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Example: Gradient Descent

Gradient / backward computation

Recall collective
communication _
o) — glt—1) 4

|

eV, (0D D)

®* The first unification:

* Most ML algorithms are

* iterative-convergent is the master equation behind

] !

objective data

iterative-convergent




How to Distribute this Equation®e

Gradient / backward computation

|

") =9~V 4e.V, ("D D)
] !

objective data

P
ot — glt) L ¢ Z Vﬁ(O(’),Dg))

pzl\

How to perform this sume



Problems It expressing this in Spark

* ML Is too diverse; hard to express their computation in coarse-

grained data transformations.

map(f:T=1U) : RDD[T]= RDD[U]

filter(f : T = Bool) : RDD[T]= RDD[T]

flatMap(f : T = Seq[U]) : RDDI[T]=-RDDI[U]
sample(fraction : Float) : RDD[T] = RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] = RDDI[(K, Seq[V])]
reduceByKey(f : (V,V)=V) : RDDI[(K, V)] = RDD[(K, V)]
union() : (RDDI[T],RDD[T])=- RDDI[T]
join() : (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W1))]
crossProduct() : (RDD[T],RDD[U]) = RDDI[(T, U)]
mapValues(f : V= W) : RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDDI[(K, V)] = RDD|[(K, V)]
partitionBy(p : Partitioner[K]) : RDDI[(K, V)] = RDD|[(K, V)]

C




Problems It expressing this in Spark

P
0+ =90 1 e Y v,(60, DY)
p=1

* Very heavy communication per iteration

* Compute tfime : communication time = 1:10 in the era of 2012



Consistency

P
0+ =90 1 e Y v,(60, DY)
p=1

Global Syndhronization Barrier

Device A
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BSP's Weakness: Stfragglers

Device A

(" )

>

\. J

Device B

Time



An interesting property of Gradient Descent (ascent)




Machine Learning is Error-tolerant (under certain
conditions)




Background: Strict Consistency

®* Baseline: Bulk Synchronous Parallel (BSP)

* MapReduce, Spark, many DistML Systems . Global Synchronization Barrier
Device A 5
¢ ‘ AL O A O
®* Devices compute updates A, () between . )
. . . . Device B
global barriers (iteration boundaries) .
5.0 K 4.0
* Advantage: Execution is serializable A0
A A
® Same guarantees as sequential algo! ‘ 0 -
1 2 3 4
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Background: Asynchronous Communication
(No Consistency)

®* Asynchronous (Async): removes all communication barriers

Device | I
Device 2 -»“-»““-g»
Device 3 “@@“““

Device 4 '}“‘»E’““»

Bridging/Consistency Model




Background: Bounded Consistency

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-toamier)

e.g. Stale Synchronous Parallel (SSP): Devices alowed to iterate at different speeds

» Fastest & slowest device must not dnft > s iterations apart (in this example, s = 3)
e 5Isthe maximum staleness

Delay - 3 | | Stalenesss =3

Device A

y Block

Device B

J

20 [Hoetdl., 2013; Dc;ioe]’r5 ?I., 2015; Wei et dl, ] . 3 4 5 A Clock
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SSP: “Lazy” Communication

SSP: devices avoid communicating unless necessary
* |.e.when staleness condition is abbout 1o e violated
» Favors throughput atf the expense of statistical efficiency

Updates received by Device B | De_lcy =2

Staleness = 3

4 ) I

Device B

e

th communiéated, but still
q/ \/ satisfy SSP
1 2 3 4 5 6 Clock
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Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay

SSP s=0
|— SSP s=2
— SSP s=3
—SSP s=5

- - ESSP s=0

——SSP s=10 |

--ESSP s=10¢




Parameter Server Naturally emerges



Parameter Server Implementation

* Sharded parameter server: sharded KV stores

* Avoid communication bottleneck

® Redundancy across different PS shards
Parameter Servers




Summary: Parameter Server

* Why does it emergee
* Unification of iterative-convergence optimization algorithm
* What problems does it address and howe
* Heavy communication, via flexible consistency
® Prose
* Cope well with iterative-convergent algo
® Conse
* Extension fo GPUse

® Strong assumption on communication bottleneck



The Second Unifled Component: Neural Networks
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input 1s 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096—4096-1000.

Figure from AlexNet
[Knizhevsky et al., NeurlPS 2012], [Krizhevsky et al., prepnnt, 2014]



Deep learning Emerges

* Still iIferative-convergent: because of using SGD
* GPU becomes a must
* Neural network architecture itselt can be very diverse
®* Buft less diverse than the whole spectrum of all ML models
* Still needs a sufficiently expressive lib to program various architectures
* Map-reduce, spark-defined data processing are too coarse grained
* |t starts with a relatfively small model
* Spark is foo bulky

* Spark op lib does not align well with heural network ops
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Deep Learning Libraries

* Deep Learning as Dataflow Graphs

* Auto-differentiable Libraries



Recall our Godl

* Goal: we want 1o express as many as deep neural networks as
possible using one set of programming inferface by connecting
math primitives

* What constitutes a model from math primitives?

* Model and architecture: connecting math primitives
* Objective function
* Optimizer

* Data



Discussion: how we express computation in history
Applications <-> System Design

Application Data management Big data processing
(OLTP) (OLAP)

Systems SQL Spark /mapreduce

Query planner Dataflow, lineage

Relational database Data warehousing

Storage Column storage



High-level Picture

Data Model Compute

Math primiti
? = PHITITVES ?Make them run on (clusters

?{xi}” i—1 (mostly matmul of ) different kinds of
hardware

?A repr that expresses the
computation using primitives



High-level Picture

Data Model Compute

Math primiti
? = PHITITVES ?Make them run on (clusters

L =1 (mostly matmul of ) different kinds of
hardware

?A repr that expresses the
computation using primitives



Maybee

map(f:T=1U) : RDD|[T]=-RDD[U]
filter(f : T= Bool) : RDD[T]=-RDDI[T]
flatMap(f : T = Seq[U]) : RDD|[T] = RDD|[U]
sample(fraction : Float) : RDD[T]= RDD[T] (Deterministic sampling)
groupByKey() : RDD[(K, V)] = RDD[(K, Seq[V])]
reduceByKey(f : (V,V)=YV) : RDD[(K, V)] = RDDI[(K, V)]
union() : (RDD[T],RDD[T]) = RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)],RDD[(K, W)]) = RDDI[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U]) = RDDI(T, U)]
mapValues(f: V=W) : RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDDI[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]

C

* ML Is mostly tensor operations and more diverse; hard to express

thelr computation In coarse-grained data tfransformations.



Operators

API

Name inference rule

Tensor.

abs() , torch.abs()

Tensor

.abs_()

Tensor.

acos() , torch.acos()

Tensor.

acos ()

Tensor.

add() , torch.add()

Tensor.

add_()

Tensor

.addmm() , torch.addmm()

Tensor.

addmm ()

Tensor.

addmv() , torch.addmv()

Tensor.

addmv_()

Tensor.

align_as()

Tensor.

align_to()

Tensor

.all() , torch.all()

Tensor.

any() , torch.any()

Tensor.

asin() , torch.asin()

Tensor.

asin ()

Tensor.

atan() , torch.atan()

Keeps input names

Keeps input names

Keeps input names

Keeps input names

Unifies names from inputs

Unifies names from inputs

Contracts away dims

Contracts away dims

Contracts away dims

Contracts away dims

See documentation
See documentation
None
None

Keeps input names

Keeps input names

Keeps input names

Total: 2,188

Corvolution: 67

Pocling: 42 B
BalchNorm: 15«

Privale: 233

Base: 1215

Inplace: 183

-mnl
Weird St 40 0

Out: 308

Tonsorn 94

Overloacs: 583 Scalar: 89 ||

grad_input: 52 1
Tonsor_out: 24

dmname: 21
Scalar_out:- 20 =

A long tad: 377

Abas: 42
Compesite Reduction: 76 ||
Composito Pointwiso: 87 ]
. Primitive Pointwise: 50 1
Composite Malmut: 13 =
ViewReshapo: 70

< Factory: 39
Misc: 56
Named: 5
‘Complex: 8
Linalg: 31
Sparse: 13 -
FFT. 20 »
RNN: 12
Quantizabon: 11
Scaltee/Gathee. 15 =
FBgemm:7 ~



High-level Picture

Data Model Compute

Math primitives
?Make them run on (clusters

{xi}ni=1 (mostly matmul) of ) different kinds of
hardware

?A repr that expresses the
computation using primitives



Computational Datatlow Graph

* Node: represents the computation (operafor)

®* Edge: represents the data dependency (data flowing direction)
®* Node: also represents the oufput fensor of the operator
®* Node: also represents an input constant tensor (if it Is not @

compute operator)

N
mul }/[ add—const] [ wl J [ w2 1 @
3

mat"mulH relu ]—{ mat‘mul]—>@éE
axb+3 L = MSE(’LUQ ' ReLU(wl.:c), y)




Case Study: TensorFlow Program

* In the next few slides, we will do a case study of a deep learning
program using TensorFlow v1 style API (classic Flavor).

®* Nofe that today most deep learning frameworks now use a
different style, but share the same mechanism under the hood

®* Think about abstraction and implementation when going through

these examples



1ON

Logistic Regress

One linear NN

Softmax

One Linear Layer

Input
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Whole Program

import tinyflow as tf

from tinyflow.datasets import get mnist

,ﬁ_ﬂcea_tﬁ_the_mgde]. _________________________ Forward CompUtat|0n
x = tf.placeholder(tf.float32, [None, 784]) } DEC|arati0n

= tf.Variable(tf.zeros([784, 10]))
= tf.nn.softmax(tf.matmul(x, W)) !

. S g BN e g g RS R G R N S AR S SN R R G B Em Ee am e

——

\
b

W
y
3
y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))

# Update rule
learning rate = 0.5
W grad = tf.gradients(cross _entropy, [W])[9]
train step = tf.assign(W, W - learning rate * W grad)
# Tralnlng Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for 1 in range(1000):
batch xs, batch ys = mnist.train.next batch(160)
sess.run(train step, feed dict={x: batch xs, y :batch ys})



Loss Function

import tinyflow as tf
from tinyflow.datasets import get mnist

Create the model

#

x = tf.placeholder(tf.float32, [None, 784])
W = tf.vVariable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

e R e e R e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

f# Define loss and optimizer \‘/ LOSS funCtion DECIBration

|
y = tf.placeholder(tf.float32, [None, 10]) :

|
cross_entropy = tf.reduce mean(-tf.reduce sum(y_ * tf.log(y), reduction indices=[1])) ,
I

B J P(label — k) — Y

learning rate = 0.5
10

o —— —

W grad = tf.gradients(cross _entropy, [W])[©]

train step = tf.assign(W, W - learning rate * W grad) L(y) — Z I(label — k) 10(%(3/2)
# Tralning Loop

sess = tf.Session() k}——l

sess.run(tf.initialize all variables())

mnist = get mnist(flatten=True, onehot=True)

for 1 in range(1000):
batch xs, batch ys = mnist.train.next batch(100)
sess.run(train step, feed dict={x: batch xs, y :batch ys})



Auto-diff

import tinyflow as tf

from tinyflow.datasets import get mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))
7
y_

Define loss and optimizer

= tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
# Update rule

learning rate = 0.5

Automatic Differentiation:
| W_grad - tf.gradients(cross_entropy, [W)[0] ] Next incomin g topic

T o e E e e e e mm e e e e e E e e mme e e e e e Em e mmm mm e e e e e e mmm e e mme e e e e G Emm e e e e e e e e

train step = tf.assign(W, W - learning rate * W grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize all variables())

mnist = get mnist(flatten=True, onehot=True)

for 1 in range(1000):
batch Xxs, batch ys = mnist.train.next batch(1690)
sess.run(train step, feed dict={x: batch xs, y :batch ys})



SGD Update

import tinyflow as tf

from tinyflow.datasets import get mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])
W = tf.variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
# Update rule

learning rate = 0.5

' grad = tf.gradients(cross _entropy, [W])[©]
_Wgrad - tf.gradients(cross_en tropy, MDIO) . SGD update rule

train step = tf.assign(W, W - learning rate * W grad)

-———

-~ ¥ Traihming~Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)
for 1 in range(1000):
batch xs, batch ys = mnist.train.next batch(160)
sess.run(train_step, feed dict={x: batch xs, y :batch ys})



Trigger the Execution

import tinyflow as tf

from tinyflow.datasets import get mnist

# Create the model

X = tf.placeholder(tf.float32, [None, 784])
W = tf.variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))
b
y_

Define loss and optimizer

= tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
# Update rule
learning rate = 0.5
W grad = tf.gradients(cross _entropy, [W])[9]
train step = tf.assign(W, W - learning rate * W grad)
# Tralning Loop
sess = tf.Session()
sess.run(tf.initialize all variables())
mnist = get mnist(flatten=True, onehot=True)

for 1 in range(1000): Real EXECUtIOH happenS

batch xs, batch ys = mnist.train.next batch(160) r]GEI,EEI

o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e



What happens behind the Scene

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
tf.nn.softmax(tf.matmul(x, W))

<
|




What happens behind the Scene (Cond.)

y = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce mean(-tf.reduce sum(y_ * tf.log(y), reduction indices=[1]))

— o e e e e e e e e e e e e e e e M e e S e e e M e e e e M e e e e e




What happens behind the Scene (Cond.)

W grad = tf.gradients(cross _entropy, [W])[9]

Automatic Differentiation, more details in
follow up lectures

matmult softmax

cross_entropy
log }———+[ mul jk—ﬂ{ mean ]————*

________________________________________________________________________________________________

W grad:(  matmult- | ‘ |
“ EL_ transpose softmax-grad ]+4: log-grad mul 1 / batch size

----------------------------------------------------------------------------------------------------




What happens behind the Scene (Cond.)

sess.run(train_step, feed dict={x: batch _xs, y :batch ys})

y cross_entropy
matmult softmax log }———+[ mul }——{j mean ]————*
e

i W_grad matmult- l
i [ mul ]1 { transpose softmax-grad ]+4: log-grad F———{ mul }*——- 1 / batch size

e o e o oo o o e o o o o e ]



Discussion

* What are the benetfits for computational graph abstractione
* What are possible implementations and opfimizations on this
graphe

* What are the cons for computational graph abstractione

[ assign ]*

cross_entropy
T matmult softmax log }———+[ mul }——+[ mean ;}———+
sub T
| [y—l

|_grad matmult-
[ mlT.ll ]7 transpose softmax-grad H log-grad ]4—[ mul }——— 1 / batch size

learning rate




A different flavor: PyTorch

A graph is created on the fly n ﬂ “ .

H_h = torch.randn (20, 20, requires_grad=TruE}
W x = torch.randn (20, 10, requires grad=True)
¥ = torch.randn(l, 10)

prev h = torch.randn(l, 20)



Topic: Symbolic vs. Imperative

* Symbolic vs. imperative programming

* Define-then-run vs. Define-and-run

X = torch.Tensor([3

y = torch.Tensor([2]

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W)) loss = square(z)

Z =X - Y

| loss.backward()
y = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) print(x'grad)

Symbolic Imperative
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Discussion: Symbolic vs. Imperative

* Symbolic
* Good
® eqsy fo optimize (e.g. distributed, batching, parallelization) for developers
* Much more efficient: can be 10x more efficient
* Bad
* The way of programming might be counter-intuitive
* Hard to debug for user programs
* Less flexible: you need to write symbols before actually doing anything
* |mperative:
* Good
* More flexible: write one line, evaluate one line (that's why we all like Python)
® FEasy to program and easy to debug
* Bad
®* |Less efficient
* More difficult to optimize



MCQ Time

* Which category, symbolic vs. imperative, is the following PL
belonging to<¢
® C++
®* Python
* SQL



Something Interesting Heree

* Python Is a define-and-run PL
* Tensorflow Is define-then-run ML fraomework

®* Tensortflow has Python as the primary interface language

®* You are indeed using a DSL built on top of Python

® But PyTorch DSL is more pyfhonic than Tensortlow DSL.
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Symbolic vs. Imperative (2016)

DyNet

2>
‘r'torch Chainer

‘ dmlc
PYTORCH mxnet

Tensor

+Q+’ Caffe2

theano

Caffe

Imperative

Symbolic
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Symbolic vs. Imperative (2024)

PYTORCH

—

Imperative Symbolic



Market size of frameworks

ArXiv Articles .
Percentage of Repositories by Framework ® Other W PyTorch [l TensorFlow Number of Models on HuggingFace
100% s0000
T5%
3000 s0000
S &
" +£ 50% 3
i) o =
L o = 40000
fak) o
: ; :
25% E
=
20000
0%
Jan 2018 Jan 2019 Jan 2020 Jan 2021 Jan 2022 -
e Eee——— ]
& Repository creation date PyTorch Cnly TensorFlow Only PyTorch and TensorFlow

G G
?‘:5&.5, o "'r-hyé} Ve ﬂeﬁ‘h{e& :?,-5%3 Qﬁa@?& 9514!

Framework j}?.ﬂfq 7




Atfter-class Question

Why PyTorch wins the market even if it was a later framework®e
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Symbolic vs. Imperative (2024)

PYTORCH

—

Imperative Symbolic



Just-in-time (JIT) Compilation

* |deally, we want define-and-run during

* We want define-then-run during

* QQ: how can combine the best of both worlds?

@torch.compile()

X = torch.Tensor([3]) X = torch.Tensor([3])
y = torch.Tensor([2]) y = torch.Tensor([2])
Z =X - Y Z =X - Y
loss = square(z) loss = square(z)
loss.backward() loss.backward()
print(x.grad) print(x.grad)

Dev mode Deploy mode:

Decorate torch.compile()



What happens behind the scene

Graph Graph Graph
Acquisition Lowering Compilation
Izlg'tl"ADz:‘oagT:d ATen/Prim IR It::’utiglnductor (default) powered by Triton
' . : Your Own Backend
\ nvFuser
FTVM
- XLA
, AlTemplate
 TensorRT
: ; = m M| oMo m oo
@torch.compile() . . - La T T
| v : EEm L Umm
def fOO(X): . | Comzd | Conv RNl bias |
y = F.conv2d(x, ...) v v | s eeBl [EEE
APl — ENNE 2 — x| - — "1 1. ‘B 1. "3 1
return F.relu(z) v | o i b
. [
/) | mo RN om
[YI max(x%,0) | EEN EEN EEN
v 7 EEN EE EEN

What is the problem of JIT?
Requirements for static graphs



Q: What is the problem of JIT¢

A: Requirements for stafic graphs



Static Models vs. Dynamic Models

Dataflow graph
- N - N
e N e N
s — [ convad H pool H conv2d } v D
\\ X K\ y
N S N Y
e [ LSTM } S [ LSTM }
[ LS } [ LSTH } NP VP [ LSTM } LSTM
[ LSTH } LSTH } v NP [ LSTM [ LSTM } [ LSTM } [ LSTM }
[ LSTH } [ LSTH } [ LSTM }[ LSTM }
T ------------------------- } --------------- The gl picked | | e
John hit the ball the con  The gir picked the coin



High-level Picture

Data Model Compute

( tl tmul) ?Mdke them run on (clusters
{xi}ni=1 HastieAiasin of ) different kinds of
hardware

Math primitives

?A repr that expresses the
computation using primitives



Next class

A repr that expresses the
computation using
primitives

A repr that expresses the
computation using primitives

? A repr that expresses the
backward computation using
primitives



Recap: how to take derivativee

Given f(6), whati S~ af ?

Problem:
0 0+e)—f(6 '
% = lim M slow: evaluate f twice to gef
€ — ’
F0+e) - f(H ) : one gradient
~ ——————+ 0(e%) Error: approximal and

floating point has errors



INnstead, Symbolic Differentiation

Write down the formula, derive the gradient following PD rules

a(f(8) +g(8)) af(6) 59(9)

o]y, o]y, o]y,

d(f(0)q(0 df (6 0g(@
(f(a)ég( ))_9(9) f( ) 1 F(O) g( )

0(f(g(6)) 0f(g(6))ag(6)

00 0g(0) 90




Map autodiif rules to computational graph

y = f(x{,x,) = In(x;) + x;x, — sinx,

" e Q: Calculate the value of :—;

’ * A:use PD and chainrules
X2 * There are two ways of applying chain
Forward evaluation trace rules

v1=X1=2
U2=x2=5

* Forward: from left (inside) to right

v3 =Inv; =In2 = 0.693 (Qu’[gide)

vy = v XV, =10 : :

Vg = Sin v, = sin5 = —0.959 ® BOCKWOI’d frOm I’IghT (OUTSlde) TO |efT
U6 — 173 ~+ U,gl, = 10.693

v, = v, — ve = 10.693 + 0.959 = 11.652 (inside)

y =v; = 11.652 * Which one fits with deep learninge



Forward Mode AD

y = f(xq,x,) = In(xq) + x;x, — sinx,

: : ov;
®* Define v; = —
x1 ax:l_
y ® We then compute each v; following
X, the forward order of the graph
Forward evaluation trace v, =1
Vi =X = 7 sz =0
V, =X, =5 V3 = Vy/v; = 0.5
=lnv1 =In2 = 0.693 U4—U1U2+U2v1 = 1X54+0x2 =5
v, = VX v, = 10 Ve = U,c0SV, = 0Xcos5 =0
Ve = sinv, =sinb5 = —0.959 Ve =V3+1V, =05+5=55
Ve = V3 + v, = 10.693 Y, = Vs — Vs =55—0=5.5

Uy = Vg — Ve = 10.693 + 0.959 = 11.652
y = vy, = 11.652

* Finally: ;;’ =, =55
1



Summary: Forward Mode Autodiff

® Starf from the input hodes
®* Derive gradient all the way to the output hodes
®* Pros and Cons of FM Autodifte
* For f:R™ — R*, we need n forward passes to get the grad w.r.1.
each input

* However, In ML: k = 1 mostly, and n Is very large



Reverse Mode AD

] ) (] L] — a
y = f(x1,%;) = In(x;) + x,x, — sinx, * Define adjoint 7; = >
i
X e
' * We then compute each v; in the
y :
reverse topological order of the graph
X5 __0y
¢ dv-
. __0v; __
Forward evaluation trace vﬁzv?gz"?’”:l
v, =2x; =2 —5=v—76—v:=v—7x(—1)=—1
172=x2=5 :::%:T@X1:1
v =lnv; =In2 = 0.693 I
v3—v6ﬁ—v6x1—1
174 — le vz — 10 . _avg _51;4 L L
175 — sin 172 — sin 5 — _0959 U5 :vsa—w+v4a—w=v5xcosv2+v4xv1 = —0.284+ 2 =1.716
Vg = V3 + 1, = 10.693 v—lzm%+v—3%=v—4xvz+ v—3v1:5+%:5.5

v, = v, — v = 10.693 + 0.959 = 11.652

= = 11.652 . 0 _
Y= * Finally: = =7, =55
axl



Case Study

OO0
©

How to derive the gradient of v,

v— —_ ay — af(v21v3) avz _I_ af(v21v3) av3
1 6121 01}2 61)1 6173 6v1

v, | — 0vs
=Ty —2 + Vg —>
dvy O vy

For a v; used by multiple consumers:

avj

’,71: — Z vi—>j Where ’Ul_}] — '17] %
l

JENnext(i)



Summary: Backward Mode Autodiff

® Starf from the output nodes
®* Derive gradient all the way back fo the input nodes
® Discussion: Pros and Cons of FM Autodiffe
* For f: R™ - R*, we need k backward passes to get the grad
w.r.t. each input
* InML: k=1 andnis very large

* How about other areqse



Back to Our Question

A repr that expresses the
computation using
primitives

A repr that expresses the
computation using primitives

? A repr that expresses the
backward computation using
primitives



Back to our question: Construct the Backward Graph

* How can we construct a computational graph that calculates the adjoint value®e

def gradient(out):
node to grad = {out: [1]}
for i in reverse topo order(out):
U; = XjVUis; = sum(node_to_grad[i])
for k € inputs(i):

compute vy_,; = V; Py
k

append 7,_,; to node_to_grad[k]
return adjoint of input U,y

f: (exp(v1) + Dexp(vy)



How to Implement reverse Autodift (aka. BP)

Record all partial adjoints of a

def gradient(out): /////,///”///d node

node to grad = {out: [1]}

for i in reverse_topo_order(out):
U; = LV, = sum(node_to_grad[i]) -
for k € inputs(i):

compute v,_,; = v; Py
k

- Sum up all partial adjoints to
get the gradient

. Compute and propagates
partial adjoints to its inputs.

append V,_; to node_to_grad[k]| -
return adjoint of input U,y




Start from v,

def gradient(out):
node_to grad = {out: [1]}

for i in reverse _topo order(out):
» v, = Zj U;; = sum(node_to_grad[i])
for k € inputs(i):
compute v,_,; = v;

6vi

oV

append v,_,; to node_to_grad[k]|
return adjoint of input V¢

(ZZT
node_to _grad: {

4: [v4]
}

—

exp

i = 4: v, = sum(|1])

id



i=4: v, = sum(|1]) =1

_ e 81)4 =
v,: Inspect (v,,v,) and (vs, v,) K=2:Vpoq = Vg = VsV
_ — 6174 _ _
k=3: U3_,4 = Vg5 = VsV, V354 = VU3
def gradient(out): V3
node_to grad = {out: [1]} @
for i in reverse_topo_order(out):
v; = Zj V;; = sum(node_to_grad[i]) @

for k € inputs(i):
o (2
compute vy _,; = v; oo +
- append 7v,_,; to node_to_grad[k] @ X @
return adjoint of input U,y X

i =4
node to grad: {
\ 2: [_v2—>4]

id

4: [v,]

—




INspect v,

def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo_order(out):
U; = 2jVis; = sum(node_to_grad[i])
for k € inputs(i):
compute v,_,; = v;

6vi

avk
- append v,_; to node_to_grad[k]
return adjoint of input Ui,y

i =3
node to grad: {
2: [V354, V53]
3: [73]
4: [v,]

}

—

i=3: U3 donel

_ 8173 _

k=2: VUyp_3 = Vg 6_172 = Vs

,-d
D

on (3
| e

(") 4

(=) 0™
X

id



Inspect v,

def gradient(out):
node_to _grad = {out: [1]}
for i in reverse_topo_order(out):

M) U, = X7, = sun(node_to_grad[i])

l

|

}

node_to_grad: {

for k € inputs(i):

— 6vi
compute Vy_,; = V;

avk

append V,_,; to node_to_grad[k]
return adjoint of input U ,y;

= 2

20 [V354,V253]

3: [v3]
4: [v,]

——

i=2: U = Vo3 T Vpy

exp

O @

_I_

V253

id

id



Inspect (vq, v,)

def gradient(out):
node_to grad = {out: [1]}
for i in reverse_topo _order(out):
U; = XjVis; = sum(node_to_grad[i])
for k € inputs(i):
compute Vy_; = V;

6v,;

avk
- append v,_,; to node_to_grad[k]
return adjoint of input Vi, ¢

[ = 2

node_to_grad: {
1: [v4]

| 2: [Uz_)4,1)2_>3]
3: [v35]
4: [V,]

}

— i

T — ——

i=2: U = Vo3 T Vpy

_ — sz —
k=1: V15 = 1, ov;, v,exp(Vvy),

V1 = V12




Summary: Backward AD

® Construct backward graph in a symbolic way (instead of concrete
values)

®* This graph can be reused by ditferent input values



Backpropagation vs. Reverse-mode AD

® Run backward through the forward graph ® Construct backward graph

* Caffe/cuda-convnet * Used by TensorFlow, PyTorch



Incomplete yete

* What is the missing from the following graph for ML fraininge

e
_I_
(o=
X



Recall Our Master Equation
plt+1) — f(g(t)’ V: (9(?5)’ D(t)))
L = MSE(ws - ReLU(w1z), y) 6 = {wi,ws}, D = {(z,y)}
f(0,Vy) =60—-Vp

Forward



Put In Practice
p(t+1) — f(g(t)’ V: (9(?3)’ D(t)))
L = MSE(ws - ReLU(w1z), y) 6 = {w1, w2}, D = {(z,9)}
f(0,Vy) =60—-Vp

| Operator/ its output tensor —— Data flowing direction

Forward

[ wl 1 [ w2 } [SZ] [ wl 1 w2 wl w2
mat"mul }—{ relu H mat'mul @ ma’émul H relu mat}nul matmul [ relu mat"mul MéE
[ relu’ }——[matmul Mé relu -{matmul MéE’ }*’

}%
mat"mul J ma’émul mat}nul J’/ mat"mul
! :
sub [ sub




Homework: How to derive gradients for

® Softmax cross entropy:

Xi

L =-t;log(y;),y; = softmax(x); = Y e¥d



Today

* Autodiff

* Architecture Overview



MLSys’ Grand problem

* Our system goals:
e . et

@9 * Scale

| * Memory-efficient

* Run on diverse hardware

* Energy-efficient

Easy to program/debug/deploy



ML System Overview

-

SGD Trainer

N T

. :
Logit Layer =)
)

bl
-
— |
=1

Dataflow Graph

Autodiff




Dataflow Graph

Autodiff

Graph Optimization

* Goal:
®* Rewrite the original Graph G to G

® G’ runs faster than G



Dataflow Graph

Autodiff

Motivating Example: Attention

attention
head
X = "that" =
— © QN q = XQ .
> A — W et # Original
O weights Q = matmul(W_q, h)
*
X ) B *) ? — K = matmul(W_k, h)
Ol K = XK . V = matmul(W_v, h)
girl > vl W > —_— &
run C.) —»
= Context = # Me FQEd OKV
T
X — q K v QKV = matmul(concat(W_qg, W_k, W_v), h)
va V = XV 2Q, * XK7T
Lo - > W softma:t:(_ - w)*XVw
- 100
©
| | |
300 wide 100 wide

* Why merged QKV is faster?



Arithmetic Intensity

Al = Hops / #bytes



Dataflow Graph

Autodiff

How to perform graph optimizatione

* Writing rules / tfemplate

* Auto discovery



Dataflow Graph

Autodiff

Parallelization

* Goal: parallelize the graph compute over mulfiple devices

How fo partition the computational graph
on the device clustere

Fast connections
[ wl W2 - Slow connections
mat"mul relu matvmul MéE “ node node
: : Ter) Tor) o) Por) ) opy) fone] )
[ relu matmul MSE }**
mafhul} mafhul}
node node
" e pEEE EE=EE




Dataflow Graph

Autodiff

Parallelization Problems

* How fo partition

* How to communicate
®* How fo schedule

® Consistency

* How to auto-parallelize¢



Runtime and Scheduling

* Goal: schedule the compute/communication/memory in a way
that
®* As fast as possible
* Overlap communication with compute

® Subject to memory constraints



Operator Implementation

* Goal: get the tastest possible implementation of
* Matmul
* Conv2de
* For different hardware: V100, A100, H100, phone, TPU
® For different precision: fp32, fp 16, P8, fp4
* For different shape: conv2d_3x3, conv2d_5&x5, matmul2D, 3D,

attention



High-level Picture

Data Model Compute

( tl tmul) ?Mc:ke them run on (clusters
{xi}ni=1 HastieAiasin of ) different kinds of
hardware

Math primitives

A repr that expresses the
computation using primitives
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