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After Spark:

All Modern Data/ML Systems follow a similar architecture

Runtime

Manifest

Operators

Executable

A fixed set of operators

A trusted runtime with a small 
set of pre-loaded 

implementations

Executable

Compiler

Syntax

Programs



After Spark: Many new systems

Naiad



Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

2012 - Now



ML Era (roughly starts from 2008, even before Spark has 

taken off)

• ML was still very diverse (a.k.a. in a mess) in 2012

XGBOOST Spark mllib

LDA Torch (lua) / Theano / distbelief



Diversity -> Good or Bad?

• ML is so diverse 

• Cons:

• There is no unified model / computation

• Hard to build a programming model / interface that cover a 

diverse range of applications

• Pros:

• A lot of opportunities: Gold mining era



ML Systems Plan in DSC 204A

• ML System history

• Parameter server for data parallelism

• Deep Learning (Autodiff) libraries: tensorflow, pytorch, etc.

• LLMs: Model Parallelism, training and inference



ML System history

• ML Systems evolve as more and more ML components 

(models/optimization algorithms) are unified

Ad-hoc: diverse model family, 
optimization algos, and data 

Opt algo: iterative-convergent

Model family: neural nets

Model: 
CNNs/transformers/GNNs

LLMs: transformer 
decoders

More and more unified
yet scope becoming 

narrower and narrower



The first Unified component: Iterative-convergence Algo

Gradient boosting tree Coordinate descent 

EM Algorithm Gradient descent
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Example: Gradient Descent

• The first unification:

• Most ML algorithms are iterative-convergent

• iterative-convergent is the master equation behind

dataobjective

Gradient / backward computation

Recall collective 

communication



How to Distribute this Equation?

dataobjective

Gradient / backward computation

How to perform this sum?



Problems if expressing this in Spark

• ML is too diverse; hard to express their computation in coarse-

grained data transformations.



Problems if expressing this in Spark

• Very heavy communication per iteration

• Compute time : communication time = 1:10 in the era of 2012



Consistency

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()
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BSP’s Weakness: Stragglers

Time

Device A

Device B

Device C



An interesting property of Gradient Descent (ascent)



Machine Learning is Error-tolerant (under certain 

conditions)
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Background: Strict Consistency 

• Baseline: Bulk Synchronous Parallel (BSP)

• MapReduce, Spark, many DistML Systems

• Devices compute updates Δ𝐿() between 

global barriers (iteration boundaries)

• Advantage: Execution is serializable

• Same guarantees as sequential algo!

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()
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Background: Asynchronous Communication

(No Consistency)

• Asynchronous (Async): removes all communication barriers

1

1

1

1

Device 1

Device 2

Device 3

Device 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6
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Background: Bounded Consistency

Clock

Device A

Device B

Device C

1 2 3 4

Staleness s = 3 

5 6

Delay = 3

Block

[Ho et al., 2013; Dai et al., 2015; Wei et al., 
2015]

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-barrier)

e.g. Stale Synchronous Parallel (SSP):Devices allowed to iterate at different speeds

• Fastest & slowest device must not drift > 𝑠 iterations apart (in this example, 𝑠 = 3)
• 𝑠 is the maximum staleness
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SSP: “Lazy” Communication

Clock

Device A

Device B

Device C

1 2 3 4

Staleness = 3 

5 6

Delay = 2Updates received by Device B

Not communicated, but still 
satisfy SSP

SSP: devices avoid communicating unless necessary

• i.e. when staleness condition is about to be violated
• Favors throughput at the expense of statistical efficiency
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Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay



Parameter Server Naturally emerges



Parameter Server Implementation

• Sharded parameter server: sharded KV stores

• Avoid communication bottleneck

• Redundancy across different PS shards



Summary: Parameter Server

• Why does it emerge?

• Unification of iterative-convergence optimization algorithm

• What problems does it address and how?

• Heavy communication, via flexible consistency

• Pros?

• Cope well with iterative-convergent algo

• Cons?

• Extension to GPUs?

• Strong assumption on communication bottleneck



The Second Unified Component: Neural Networks

Figure from AlexNet

[Krizhevskyet al., NeurIPS 2012], [Krizhevskyet al., preprint, 2014]



Deep learning Emerges

• Still iterative-convergent: because of using SGD

• GPU becomes a must

• Neural network architecture itself can be very diverse

• But less diverse than the whole spectrum of all ML models

• Still needs a sufficiently expressive lib to program various architectures

• Map-reduce, spark-defined data processing are too coarse grained

• It starts with a relatively small model

• Spark is too bulky

• Spark op lib does not align well with neural network ops
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Deep Learning Libraries

• Deep Learning as Dataflow Graphs

• Auto-differentiable Libraries



Recall our Goal

• Goal: we want to express as many as deep neural networks as 

possible using one set of programming interface by connecting

math primitives

• What constitutes a model from math primitives?

• Model and architecture: connecting math primitives

• Objective function

• Optimizer

• Data



Discussion: how we express computation in history

Applications <-> System Design

Application

Systems

Data management 

(OLTP)

SQL

Query planner 

Relational database

Storage

Big data processing 

(OLAP)

Spark/mapreduce

Dataflow, lineage

Data warehousing

Column storage



High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of ) different kinds of

hardware



High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of ) different kinds of

hardware



Maybe?

• ML is mostly tensor operations and more diverse; hard to express 

their computation in coarse-grained data transformations.



Operators



High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of ) different kinds of

hardware



Computational Dataflow Graph

• Node: represents the computation (operator)

• Edge: represents the data dependency (data flowing direction)

• Node: also represents the output tensor of the operator 

• Node: also represents an input constant tensor (if it is not a 

compute operator)

x MSE

y

relu matmul

w2

matmul

w1

a x b + 3



Case Study: TensorFlow Program

• In the next few slides, we will do a case study of a deep learning 

program using TensorFlow v1 style API (classic Flavor).

• Note that today most deep learning frameworks now use a 

different style, but share the same mechanism under the hood

• Think about abstraction and implementation when going through 

these examples



One linear NN: Logistic Regression



Whole Program



Loss Function



Auto-diff



SGD Update



Trigger the Execution



What happens behind the Scene



What happens behind the Scene (Cond.)



What happens behind the Scene (Cond.)



What happens behind the Scene (Cond.)



Discussion

• What are the benefits for computational graph abstraction?

• What are possible implementations and optimizations on this 

graph?

• What are the cons for computational graph abstraction?



A different flavor: PyTorch



Topic: Symbolic vs. Imperative

• Symbolic vs. imperative programming

• Define-then-run vs. Define-and-run

ImperativeSymbolic
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Discussion: Symbolic vs. Imperative

• Symbolic

• Good

• easy to optimize (e.g. distributed, batching, parallelization) for developers

• Much more efficient: can be 10x more efficient

• Bad

• The way of programming might be counter-intuitive

• Hard to debug for user programs

• Less flexible: you need to write symbols before actually doing anything

• Imperative:

• Good

• More flexible: write one line, evaluate one line (that’s why we all like Python)

• Easy to program and easy to debug

• Bad

• Less efficient

• More difficult to optimize



MCQ Time

• Which category, symbolic vs. imperative, is the following PL

belonging to?

• C++

• Python

• SQL



Something Interesting Here?

• Python is a define-and-run PL

• Tensorflow is define-then-run ML framework

• Tensorflow has Python as the primary interface language

• You are indeed using a DSL built on top of Python

• But PyTorch DSL is more pythonic than Tensorflow DSL.
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Symbolic vs. Imperative (2016)

Imperative Symbolic
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Symbolic vs. Imperative (2024)

Imperative Symbolic



Market size of frameworks



After-class Question

Why PyTorch wins the market even if it was a later framework?
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Symbolic vs. Imperative (2024)

Imperative Symbolic



Just-in-time (JIT) Compilation

• Ideally, we want define-and-run during ______

• We want define-then-run during _____

• Q: how can combine the best of both worlds?

@torch.compile()

Devmode Deploymode:
Decorate torch.compile()



What happens behind the scene

@torch.compile()

What is the problem of JIT?

Requirements for static graphs



Q: What is the problem of JIT?

A: Requirements for static graphs



LSTM LSTM

LSTMLSTM

LSTMLSTM

LSTM

Static Models vs. Dynamic Models

62
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LSTM LSTM

LSTM

LSTM LSTM

The girl picked the coin

Dataflow graph



High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of ) different kinds of

hardware



Next class

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives



Recap: how to take derivative?

Given 𝑓 𝜃 , what is 
𝜕𝑓

𝜕𝜃
？

Problem:
slow: evaluate f twice to get 
one gradient

Error: approximal and 
floating point has errors

𝜕𝑓

𝜕𝜃
= lim

𝜖→0

𝑓 𝜃 + 𝜖 − 𝑓(𝜃)

𝜖

≈
𝑓 𝜃 + 𝜖 − 𝑓 𝜃 − 𝜖

2𝜖
+ 𝑜(𝜖2)



Instead, Symbolic Differentiation

Write down the formula, derive the gradient following PD rules

𝜕(𝑓 𝜃 +𝑔 𝜃 )

𝜕𝜃
=
𝜕𝑓 𝜃

𝜕𝜃
+
𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓 𝜃 𝑔 𝜃 )

𝜕𝜃
= 𝑔 𝜃

𝜕𝑓 𝜃

𝜕𝜃
+𝑓 𝜃

𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓(𝑔 𝜃 )

𝜕𝜃
=
𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)

𝜕𝑔 𝜃

𝜕𝜃



Map autodiff rules to computational graph

• Q: Calculate the value of 
𝜕𝑦

𝜕𝑥1

• A: use PD and chain rules

• There are two ways of applying chain 

rules

• Forward: from left (inside) to right

(outside)

• Backward: from right (outside) to left

(inside)

• Which one fits with deep learning?



Forward Mode AD

• Define ሶ𝑣𝑖 =
𝜕v𝑖

𝜕𝑥1

• We then compute each ሶ𝑣𝑖 following 

the forward order of the graph 

• Finally: 
𝜕𝑦

𝜕𝑥1
= ሶ𝑣7 = 5.5



Summary: Forward Mode Autodiff

• Start from the input nodes

• Derive gradient all the way to the output nodes

• Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑛 forward passes to get the grad w.r.t.

each input

• However, in ML: 𝑘 = 1 mostly, and 𝑛 is very large 



Reverse Mode AD

• Define adjoint ഥ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖

• We then compute each ҧ𝑣𝑖 in the 

reverse topological order of the graph

• Finally: 
𝜕𝑦

𝜕𝑥1
= ҧ𝑣1 = 5.5



Case Study

How to derive the gradient of 𝑣1

For a 𝑣𝑖 used by multiple consumers:

, where 



Summary: Backward Mode Autodiff

• Start from the output nodes

• Derive gradient all the way back to the input nodes

• Discussion: Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑘 backward passes to get the grad 

w.r.t. each input

• in ML: 𝑘 = 1 and 𝑛 is very large 

• How about other areas?



Back to Our Question

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives



Back to our question: Construct the Backward Graph

• How can we construct a computational graph that calculates the adjoint value? 

f: (exp 𝑣1 +1)exp(𝑣1)



How to implement reverse Autodiff (aka. BP)

Record all partial adjoints of a
node

Sum up all partial adjoints to
get the gradient

Compute and propagates
partial adjoints to its inputs.



Start from 𝑣4 i = 4: 𝑣4 = 𝑠𝑢𝑚 1 = 1



𝑣4: Inspect (𝑣2, 𝑣4) and (𝑣3, 𝑣4) 

i=4: ഥ𝑣4 = 𝑠𝑢𝑚 1 = 1

k=2: 𝑣2→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣2
= ഥ𝑣4𝑣3

k=3: 𝑣3→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣3
= ഥ𝑣4𝑣2, 𝑣3→4 = ഥ𝑣3



Inspect 𝑣3

i=3: ഥ𝑣3 done!

k=2: 𝑣2→3 = ഥ𝑣3
𝜕𝑣3

𝜕𝑣2
= ഥ𝑣3



Inspect 𝑣2

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4



Inspect (𝑣1, 𝑣2) 

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4

k=1: 𝑣1→2 = ഥ𝑣2
𝜕𝑣2

𝜕𝑣1
= ഥ𝑣2exp(v1),

ഥ𝑣1 = 𝑣1→2



Summary: Backward AD

• Construct backward graph in a symbolic way (instead of concrete

values)

• This graph can be reused by different input values

• Used by TensorFlow, PyTorch



Backpropagation vs. Reverse-mode AD

• Run backward through the forward graph

• Caffe/cuda-convnet

• Construct backward graph

• Used by TensorFlow, PyTorch

VS.



Incomplete yet? 

• What is the missing from the following graph for ML training?
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Forward Backward Weight update

Recall Our Master Equation
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Put in Practice

Operator / its output tensor Data flowing direction

Forward

x MSE

y

relu matmul

w2

matmul

w1

+Backward

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

+Weight update

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub



Homework: How to derive gradients for

• Softmax cross entropy:

𝐿 = −∑𝑡𝑖 log 𝑦𝑖 , 𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 =
𝑒𝑥𝑖

∑𝑒𝑥𝑑



Today

• Autodiff

• Architecture Overview
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MLSys’ Grand problem

• Our system goals:

• Fast

• Scale

• Memory-efficient

• Run on diverse hardware

• Energy-efficient

• Easy to program/debug/deploy



ML System Overview

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory



Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Goal:

• Rewrite the original Graph G to G’

• G’ runs faster than G



Motivating Example: Attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Why merged QKV is faster?



Arithmetic Intensity

AI = #ops / #bytes



How to perform graph optimization?

• Writing rules / template

• Auto discovery

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Parallelization

• Goal: parallelize the graph compute over multiple devices

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

node node

node node

Fast connections

Slow connections

How to partition the computational graph 
on the device cluster?

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’



Parallelization Problems

• How to partition

• How to communicate

• How to schedule

• Consistency

• How to auto-parallelize?

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Runtime and Scheduling

• Goal: schedule the compute/communication/memory in a way

that

• As fast as possible

• Overlap communication with compute

• Subject to memory constraints

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Operator Implementation

• Goal: get the fastest possible implementation of

• Matmul

• Conv2d?

• For different hardware: V100, A100, H100, phone, TPU

• For different precision: fp32, fp16, fp8, fp4

• For different shape: conv2d_3x3, conv2d_5x5, matmul2D, 3D,

attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of ) different kinds of

hardware
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